国际口腔医学杂志 ›› 2026, Vol. 53 ›› Issue (1): 43-50.doi: 10.7518/gjkq.2026201

• 干细胞专栏 • 上一篇    下一篇

牙髓干细胞在牙槽骨再生中的成骨作用及影响因素

丁成兴1(),李小兰2,杨明理1()   

  1. 1.遵义医科大学基础医学院 遵义 563000
    2.遵义医科大学口腔医学院 遵义 563000
  • 收稿日期:2024-12-04 修回日期:2025-05-23 出版日期:2026-01-01 发布日期:2025-12-31
  • 通讯作者: 杨明理
  • 作者简介:丁成兴,学士,Email:2816105292@qq.com
  • 基金资助:
    遵义市科技计划项目(遵市科合HZ字2020-36);遵义医科大学2018年度学术新苗培养及创新探索专项项目(黔科合平台人才[2018]5772-043);2023年度贵州省卫生健康委科学技术基金(gzwkj2023-520)

Osteogenic effect and factors that influence dental pulp stem cells in alveolar bone regeneration

Chengxing Ding1(),Xiaolan Li2,Mingli Yang1()   

  1. 1.School of Preclinical Medicine, Zunyi Medical University, Zunyi 563000, China
    2.School of Stomatology, Zunyi Medical University, Zunyi 563000, China
  • Received:2024-12-04 Revised:2025-05-23 Online:2026-01-01 Published:2025-12-31
  • Contact: Mingli Yang
  • Supported by:
    2023 Science and Technology Fund Project of Guizhou Provincial Health Commission(gzwkj2023-520);Project of Zunyi Science and Technology Department (Zunyi Science and Technology Cooperation Project HZ [2020]36);Project of Guizhou Province Science and Technology Department (Guizhou Science and Technology Coo-peration [2018]5772-043)

摘要:

牙髓干细胞具有自我更新和分化为多种细胞类型的潜力,可将其移植到牙槽骨缺损区域,诱导其分化为成骨细胞,从而促进牙槽骨的再生与重建。本文综述了牙髓干细胞在牙槽骨再生中的成骨能力以及影响其成骨能力的因素,分析了牙髓干细胞应用于临床所面临的问题,旨在为牙髓干细胞修复牙槽骨的基础研究和临床应用提供思路。

关键词: 牙髓干细胞, 牙槽骨, 骨缺损, 骨再生

Abstract:

Dental pulp stem cells (DPSCs) have potential for self-renewal and differentiation into various cell types. They can be transplanted into the defect area of the alveolar bone to induce their differentiation into osteoblasts, thereby promoting the regeneration and reconstruction of the alveolar bone. This study reviews the osteogenic ability of DPSCs in alveolar bone regeneration and the factors that influence their osteogenic ability. The challenges faced in the clinical application of DPSCs are analyzed to provide insights into the basic research and clinical application of DPSCs for repairing the alveolar bone.

Key words: dental pulp stem cell, alveolar bone, bone defect, bone regeneration

中图分类号: 

  • R78

图1

DPSC参与成骨分化的机制及影响因素"

[1] Shi X, Mao J, Liu Y. Pulp stem cells derived from human permanent and deciduous teeth: biological characteristics and therapeutic applications[J]. Stem Cells Transl Med, 2020, 9(4): 445-464.
[2] Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo [J]. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.
[3] Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth[J]. Proc Natl Acad Sci U S A, 2003, 100(10): 5807-5812.
[4] Nuti N, Corallo C, Chan BM, et al. Multipotent differentiation of human dental pulp stem cells: a literature review[J]. Stem Cell Rev Rep, 2016, 12(5): 511-523.
[5] Ma LS, Hu JC, Cao Y, et al. Maintained properties of aged dental pulp stem cells for superior periodontal tissue regeneration[J]. Aging Dis, 2019, 10(4): 793-806.
[6] Monterubbianesi R, Bencun M, Pagella P, et al. A comparative in vitro study of the osteogenic and a-dipogenic potential of human dental pulp stem cells, gingival fibroblasts and foreskin fibroblasts[J]. Sci Rep, 2019, 9(1): 1761.
[7] Wang JF, He PB, Tian Q, et al. Genetic modification of miR-34a enhances efficacy of transplanted human dental pulp stem cells after ischemic stroke[J]. Neural Regen Res, 2023, 18(9): 2029-2036.
[8] Carvalho S, Santos JI, Moreira L, et al. Neurological disease modeling using pluripotent and multipotent stem cells: a key step towards understanding and treating mucopolysaccharidoses[J]. Biomedicines, 2023, 11(4): 1234.
[9] Zhang YH, Zhao WH, Jia LY, et al. The application of stem cells in tissue engineering for the regeneration of periodontal defects in randomized controlled trial: a systematic review and meta-analysis[J]. J E-vid Based Dent Pract, 2022, 22(2): 101713.
[10] Li AN, Sasaki JI, Abe GL, et al. Vascularization of a bone organoid using dental pulp stem cells[J]. Stem Cells Int, 2023, 2023: 5367887.
[11] Zhang RT, Xie L, Wu H, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration[J]. Acta Biomater, 2020, 113: 305-316.
[12] Wang W, Zhu YR, Li JJ, et al. Bioprinting EphrinB2-modified dental pulp stem cells with enhanced osteogenic capacity for alveolar bone engineering[J]. Tissue Eng Part A, 2023, 29(7/8): 244-255.
[13] Guo H, Li B, Wu ML, et al. Odontogenesis-related developmental microenvironment facilitates deci-duous dental pulp stem cell aggregates to revitalize an avulsed tooth[J]. Biomaterials, 2021, 279: 121223.
[14] Shang L, Shao J, Ge S. Immunomodulatory functions of oral mesenchymal stem cells: novel force for tissue regeneration and disease therapy[J]. J Leukoc Biol, 2021, 110(3): 539-552.
[15] Çolpak HA, Gönen ZB, Özdamar S, et al. Vertical ridge augmentation using guided bone regeneration procedure and dental pulp derived mesenchymal stem cells with simultaneous dental implant placement: a histologic study in a sheep model[J]. J Stomatol Oral Maxillofac Surg, 2019, 120(3): 216-223.
[16] Hu JC, Cao Y, Xie YL, et al. Periodontal regeneration in swine after cell injection and cell sheet transplantation of human dental pulp stem cells follo-wing good manufacturing practice[J]. Stem Cell Res Ther, 2016, 7(1): 130.
[17] D’Aquino R, de Rosa A, Lanza V, et al. Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge bio complexes[J]. Eur Cell Mater, 2009, 18: 75-83.
[18] Giuliani A, Manescu A, Langer M, et al. Three years after transplants in human mandibles, histolo-gical and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications[J]. Stem Cells Transl Med, 2013, 2(4): 316-324.
[19] Hilkens P, Bronckaers A, Ratajczak J, et al. The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration[J]. Stem Cells Int, 2017, 2017: 2582080.
[20] Huojia M, Wu ZM, Zhang XL, et al. Effect of dental pulp stem cells (DPSCs) in repairing rabbit al-veolar bone defect[J]. Clin Lab, 2015, 61(11): 1703-1708.
[21] Moeenzade N, Naseri M, Osmani F, et al. Dental pulp stem cells for reconstructing bone defects: a systematic review and meta-analysis[J]. J Dent Res Dent Clin Dent Prospects, 2022, 16(4): 204-220.
[22] Hernández-Monjaraz B, Santiago-Osorio E, Ledesma-Martínez E, et al. Dental pulp mesenchymal stem cells as a treatment for periodontal disease in older adults[J]. Stem Cells Int, 2020, 2020: 8890873.
[23] Taşlı PN, Tapşın S, Demirel S, et al. Isolation and characterization of dental pulp stem cells from a patient with Papillon-Lefèvre syndrome[J]. J Endod, 2013, 39(1): 31-38.
[24] Hiraki T, Kunimatsu R, Nakajima K, et al. Stem cell-derived conditioned media from human exfo-liated deciduous teeth promote bone regeneration[J]. Oral Dis, 2020, 26(2): 381-390.
[25] 古扎丽努尔 · 阿巴拜克力, 木合塔尔 · 霍加, 仵韩, 等. 转化生长因子β3联合牙髓干细胞在种植体周围早期骨结合中的作用[J]. 中华口腔医学杂志, 2018, 53(4): 259-263.
Ababaikeli·Guzalinuer, Huojia·Muhetaer, Wu H, et al. Experimental study on the transforming growth factor β3 combined with dental pulp stem cells in early bone integration of implant[J]. Chin J Stomatol, 2018, 53(4): 259-263.
[26] Gao PF, Liu CJ, Dong H, et al. TGF-β promotes the proliferation and osteogenic differentiation of dental pulp stem cells a systematic review and meta-analysis[J]. Eur J Med Res, 2023, 28(1): 261.
[27] Cui DX, Xiao JN, Zhou YC, et al. Epiregulin enhances odontoblastic differentiation of dental pulp stem cells via activating MAPK signalling pathway[J]. Cell Prolif, 2019, 52(6): e12680.
[28] Deng PM, Huang J, Zhang QX, et al. The role of EMILIN-1 in the osteo/odontogenic differentiation of dental pulp stem cells[J]. BMC Oral Health, 2023, 23(1): 203.
[29] Osathanon T, Nowwarote N, Pavasant P. Basic fibroblast growth factor inhibits mineralization but indu-ces neuronal differentiation by human dental pulp stem cells through a FGFR and PLCγ signaling pathway[J]. J Cell Biochem, 2011, 112(7): 1807-1816.
[30] He XY, Jiang WK, Luo ZR, et al. IFN-γ regulates human dental pulp stem cells behavior via NF-κB and MAPK signaling[J]. Sci Rep, 2017, 7: 40681.
[31] Wang W, Yuan CY, Geng TY, et al. EphrinB2 overexpression enhances osteogenic differentiation of dental pulp stem cells partially through ephrinB2-mediated reverse signaling[J]. Stem Cell Res Ther, 2020, 11(1): 40.
[32] Zhong TY, Gao YN, Qiao H, et al. Elevated osteogenic potential of stem cells from inflammatory dental pulp tissues by Wnt4 overexpression for treating bone defect in rats[J]. Ann Palliat Med, 2020, 9(5): 2962-2969.
[33] Choi B, Kim JE, Park SO, et al. Sphingosine-1-phosphate hinders the osteogenic differentiation of dental pulp stem cells in association with AKT signaling pathways[J]. Int J Oral Sci, 2022, 14(1): 21.
[34] Damrongsri D, Nowwarote N, Sonpoung O, et al. Differential expression of Notch related genes in dental pulp stem cells and stem cells isolated from apical papilla[J]. J Oral Biol Craniofac Res, 2021, 11(3): 379-385.
[35] Lu XH, Chen X, Xing J, et al. miR-140-5p regulates the odontoblastic differentiation of dental pulp stem cells via the Wnt1/β-catenin signaling pathway[J]. Stem Cell Res Ther, 2019, 10(1): 226.
[36] Omagari D, Toriumi T, Tsuda H, et al. Inductive effect of SORT1 on odontoblastic differentiation of human dental pulp-derived stem cells[J]. Differen-tiation, 2023, 133: 88-97.
[37] Zhang Y, Qiao WW, Ji YT, et al. GATA4 inhibits odontoblastic differentiation of dental pulp stem cells through targeting IGFBP3[J]. Arch Oral Biol, 2023, 154: 105756.
[38] Zheng CX, Chen J, Liu SY, et al. Stem cell-based bone and dental regeneration: a view of microenvironmental modulation[J]. Int J Oral Sci, 2019, 11(3): 23.
[39] Bar JK, Lis-Nawara A, Grelewski PG. Dental pulp stem cell-derived secretome and its regenerative potential[J]. Int J Mol Sci, 2021, 22(21): 12018.
[40] Meiliana A, Dewi NM, Wijaya A. Mesenchymal stem cell secretome: cell-free therapeutic strategy in regenerative medicine[J]. Indones Biomed J, 2019, 11(2): 113-124.
[41] Ganesh V, Seol D, Gomez-Contreras PC, et al. Exosome-based cell homing and angiogenic differentiation for dental pulp regeneration[J]. Int J Mol Sci, 2022, 24(1): 466.
[42] Brunello G, Zanotti F, Trentini M, et al. Exosomes derived from dental pulp stem cells show different angiogenic and osteogenic properties in relation to the age of the donor[J]. Pharmaceutics, 2022, 14(5): 908.
[43] Shimizu Y, Takeda-Kawaguchi T, Kuroda I, et al. Exosomes from dental pulp cells attenuate bone loss in mouse experimental periodontitis[J]. J Periodontal Res, 2022, 57(1): 162-172.
[44] Zhang WB, Saxena S, Fakhrzadeh A, et al. Use of human dental pulp and endothelial cell seeded tyrosine-derived polycarbonate scaffolds for robust in vivo alveolar jaw bone regeneration[J]. Front Bioeng Biotechnol, 2020, 8: 796.
[45] Enukashvily NI, Dombrovskaya JA, Kotova AV, et al. Fibrin glue implants seeded with dental pulp and periodontal ligament stem cells for the repair of pe-riodontal bone defects: a preclinical study[J]. Bioengineering, 2021, 8(6): 75.
[46] Mandakhbayar N, El-Fiqi A, Dashnyam K, et al. Feasibility of defect tunable bone engineering using electroblown bioactive fibrous scaffolds with dental stem cells[J]. ACS Biomater Sci Eng, 2018, 4(3): 1019-1028.
[47] Lin CY, Kuo PJ, Chin YT, et al. Dental pulp stem cell transplantation with 2,3,5,4’-tetrahydroxystilbene-2-O‑β‑D-glucoside accelerates alveolar bone regeneration in rats[J]. J Endod, 2019, 45(4): 435-441.
[48] Yuan MT, Zhan YB, Hu WP, et al. Aspirin promotes osteogenic differentiation of human dental pulp stem cells[J]. Int J Mol Med, 2018, 42(4): 1967-1976.
[49] Li MY, Wang YM, Xue J, et al. Baicalin can enhance odonto/osteogenic differentiation of inflammatory dental pulp stem cells by inhibiting the NF-κB and β‑catenin/Wnt signaling pathways[J]. Mol Biol Rep, 2023, 50(5): 4435-4446.
[50] Kim Y, Park HJ, Kim MK, et al. Naringenin stimulates osteogenic/odontogenic differentiation and migration of human dental pulp stem cells[J]. J Dent Sci, 2023, 18(2): 577-585.
[51] Mendoza AH, Balzarini D, Alves T, et al. Potential of mesenchymal stem cell sheets on periodontal regeneration: a systematic review of pre-clinical stu-dies[J]. Curr Stem Cell Res Ther, 2023, 18(7): 958-978.
[52] Aimetti M, Ferrarotti F, Gamba MN, et al. Regene-rative treatment of periodontal intrabony defects u-sing autologous dental pulp stem cells: a 1-year follow-up case series[J]. Int J Periodontics Restorative Dent, 2018, 38(1): 51-58.
[53] Ferrarotti F, Romano F, Gamba MN, et al. Human intrabony defect regeneration with micrografts containing dental pulp stem cells: a randomized controlled clinical trial[J]. J Clin Periodontol, 2018, 45(7): 841-850.
[54] Tanikawa DYS, Pinheiro CCG, Almeida MCA, et al. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients[J]. Stem Cells Int, 2020, 2020: 6234167.
[55] Nguyen-Thi TD, Nguyen-Huynh BH, Vo-Hoang TT, et al. Stem cell therapies for periodontal tissue regeneration: a meta-analysis of clinical trials[J]. J Oral Biol Craniofac Res, 2023, 13(5): 589-597.
[1] 李天元, 朱彤欣, 柳庆, 董迎春, 陈斌. 间充质干细胞用于牙周再生临床疗效的系统评价与Meta分析[J]. 国际口腔医学杂志, 2025, 52(3): 296-307.
[2] 刘志凯,刘航航,刘士博,李帛伦,刘瑶,罗恩. 沉默信息调节因子1调控成骨成血管功能促进颌骨缺损愈合的实验研究[J]. 国际口腔医学杂志, 2025, 52(3): 349-357.
[3] 秦庆钊,温奥楠,高梓翔,朱玉佳,王勇,赵一姣. 口腔颌面缺损修复数字化设计方法的研究进展[J]. 国际口腔医学杂志, 2025, 52(2): 272-280.
[4] 谭学莲, 满毅, 黄定明. 牙保存相关上颌窦底提升术的临床应用[J]. 国际口腔医学杂志, 2024, 51(4): 381-391.
[5] 常欣楠,刘磊. 生物可降解镁基材料在颅颌面外科的应用及其研究进展[J]. 国际口腔医学杂志, 2024, 51(1): 107-115.
[6] 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580.
[7] 于乐蓉,李祥伟,艾虹. 牙髓干细胞干性维持的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 463-471.
[8] 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262.
[9] 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358.
[10] 蒋青松,赖文莉,王艳. 骨增量技术在口腔正畸领域的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 243-250.
[11] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(下):临床诊治流程及实践病例[J]. 国际口腔医学杂志, 2022, 49(6): 621-632.
[12] 尹一佳,杨瑾廷,申建琪,黄凌依,井岩,官秋玥,韩向龙. 钙黏蛋白5驱动内皮细胞特异性过表达Dickkopf 1影响骨形成[J]. 国际口腔医学杂志, 2022, 49(6): 641-647.
[13] 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505.
[14] 李佩,林凌,赵玮. 乳牙牙髓干细胞在口腔组织再生修复中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 483-488.
[15] 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!