国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (3): 390-396.doi: 10.7518/gjkq.2025034

• 综述 • 上一篇    

恒牙外伤脱位再植后牙根外吸收的研究进展

陈梦雨(),李祥伟()   

  1. 中山大学附属第五医院口腔科 珠海 519000
  • 收稿日期:2023-12-12 修回日期:2024-08-25 出版日期:2025-05-01 发布日期:2025-04-30
  • 通讯作者: 李祥伟
  • 作者简介:陈梦雨,硕士,Email:913410188@qq.com
  • 基金资助:
    广东省自然科学基金(2022A1515012285)

Research progress on external root resorption after replantation of permanent teeth with traumatic avulsion

Mengyu Chen(),Xiangwei Li()   

  1. Dept. of Stomatology, the Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, China
  • Received:2023-12-12 Revised:2024-08-25 Online:2025-05-01 Published:2025-04-30
  • Contact: Xiangwei Li
  • Supported by:
    Natural Science Foundation of Guangdong Province(2022A1515012285)

摘要:

牙全脱出是牙外伤中最为严重的一种类型,目前脱位牙的首选治疗方法是牙再植。临床上多数情况下,患者及其家属未能正确地保存脱位牙,就诊时患牙已离体干燥超过60 min,此时的牙再植为延期再植,预后通常较差。本文对牙全脱出再植后牙根外吸收分类、特点、发病机制和牙延期再植前预处理方法的研究进展进行综述,为实现较好的牙再植预后探讨较适宜的延期再植牙处理方案提供借鉴和参考。

关键词: 牙全脱出, 牙再植, 牙根吸收, 牙根面处理, 发病机制

Abstract:

Tooth avulsion is the most severe type of dental trauma, and tooth replantation is currently the preferred treatment method for dislocated teeth. In most cases, patients and their families fail to properly preserve dislocated teeth. At the time of treatment, the affected tooth has been dry and detached for more than 60 min, and the prognosis is usually poor. This paper provides a review of the research progress on the classification, characteristics, pathogenesis, and pre-treatment methods for tooth root resorption after complete replantation of a dislocated tooth to provide a reference and guidance for exploring suitable treatment plans for delayed tooth replantation once better tooth replantation methods have been identified.

Key words: tooth avulsion, tooth replantation, root resorption, root surface treatment, pathogenesis

中图分类号: 

  • R782.1

图 1

牙根外吸收发病机制流程图"

1 Levin L, Day PF, Hicks L, et al. International Association of Dental Traumatology guidelines for the management of traumatic dental injuries: general introduction[J]. Dent Traumatol, 2020, 36(4): 309-313.
2 Müller DD, Bissinger R, Reymus M, et al. Survival and complication analyses of avulsed and replanted permanent teeth[J]. Sci Rep, 2020, 10(1): 2841.
3 Andreasen JO. Etiology and pathogenesis of traumatic dental injuries. A clinical study of 1 298 cases[J]. Scand J Dent Res, 1970, 78(4): 329-342.
4 Pileggi R, Dumsha TC, Nor JE. Assessment of post-traumatic PDL cells viability by a novel collagenase assay[J]. Dent Traumatol, 2002, 18(4): 186-189.
5 Barbizam JV, Massarwa R, da Silva LA, et al. Histopathological evaluation of the effects of variable extraoral dry times and enamel matrix proteins (ena-mel matrix derivatives) application on replanted dogs’ teeth[J]. Dent Traumatol, 2015, 31(1): 29-34.
6 Fouad AF, Abbott PV, Tsilingaridis G, et al. International Association of Dental Traumatology guidelines for the management of traumatic dental injuries: 2. Avulsion of permanent teeth[J]. Dent Traumatol, 2020, 36(4): 331-342.
7 Ding QW, Lin M, Zhang X, et al. Geomorphologic study of human tooth root surfaces following simulated avulsion by scanning electron microscopy[J]. Dent Traumatol, 2021, 37(3): 457-463.
8 Navarro LB, Barchiki F, Navarro Junior W, et al. Assessment of platelet-rich fibrin in the maintenance and recovery of cell viability of the periodontal ligament[J]. Sci Rep, 2019, 9(1): 19476.
9 Martins GG, Oliveira IA, Consolaro A, et al. The mechanism: how dental resorptions occur in ameloblastoma[J]. Dental Press J Orthod, 2019, 24(4): 21-32.
10 Patel S, Saberi N, Pimental T, et al. Present status and future directions: root resorption[J]. Int Endod J, 2022, 55(): 892-921.
11 Abbott PV, Lin S. Tooth resorption-Part 2: a clinical classification[J]. Dent Traumatol, 2022, 38(4): 267-285.
12 Andersson L, Blomlöf L, Lindskog S, et al. Tooth ankylosis. Clinical, radiographic and histological assessments[J]. Int J Oral Surg, 1984, 13(5): 423-431.
13 Berlin-Broner Y, Al Bawaliz L, Levin L. Implications of post-traumatic treatment of immature maxillary incisors[J]. Int Dent J, 2023, 73(3): 337-345.
14 Lauridsen E, Andreasen JO, Bouaziz O, et al. Risk of ankylosis of 400 avulsed and replanted human teeth in relation to length of dry storage: a re-evaluation of a long-term clinical study[J]. Dent Traumatol, 2020, 36(2): 108-116.
15 Patel S, Krastl G, Weiger R, et al. ESE position statement on root resorption[J]. Int Endod J, 2023, 56(7): 792-801.
16 Wedenberg C. Evidence for a dentin-derived inhibitor of macrophage spreading[J]. Scand J Dent Res, 1987, 95(5): 381-388.
17 Domon T, Sugaya K, Yawaka Y, et al. Electron microscopic and histochemical studies of the mononuclear odontoclast of the human[J]. Anat Rec, 1994, 240(1): 42-51.
18 Iglesias-Linares A, Hartsfield JK Jr. Cellular and molecular pathways leading to external root resorption[J]. J Dent Res, 2017, 96(2): 145-152.
19 Wang Z, McCauley LK. Osteoclasts and odontoclasts: signaling pathways to development and di-sease[J]. Oral Dis, 2011, 17(2): 129-142.
20 Ono T, Hayashi M, Sasaki F, et al. RANKL biology: bone metabolism, the immune system, and beyond[J]. Inflamm Regen, 2020, 40: 2.
21 Ballas SK, Zeidan AM, Duong VH, et al. The effect of iron chelation therapy on overall survival in sic-kle cell disease and β‑thalassemia: a systematic review[J]. Am J Hematol, 2018, 93(7): 943-952.
22 Mu S, Guo S, Wang X, et al. Effects of defero-xamine on the osteogenic differentiation of human periodontal ligament cells[J]. Mol Med Rep, 2017, 16(6): 9579-9586.
23 Chung JH, Kim YS, Noh K, et al. Deferoxamine promotes osteoblastic differentiation in human pe-riodontal ligament cells via the nuclear factor erythroid 2-related factor-mediated antioxidant signa-ling pathway[J]. J Periodontal Res, 2014, 49(5): 563-573.
24 Lee KE, Mo S, Lee HS, et al. Deferoxamine reduces inflammation and osteoclastogenesis in avulsed teeth[J]. Int J Mol Sci, 2021, 22(15): 8225.
25 Bansal J, Kedige SD, Anand S. Hyaluronic acid: a promising mediator for periodontal regeneration[J]. Indian J Dent Res, 2010, 21(4): 575-578.
26 Watanabe T, Takahashi N, Hirabara S, et al. Hya-luronan inhibits Tlr-4-dependent RANKL expression in human rheumatoid arthritis synovial fibroblasts[J]. PLoS One, 2016, 11(4): e0153142.
27 França MCM, da Silva TM, Silva GO, et al. Effect of ethylenediaminetetraacetic acid and hyaluronic acid on the viability and cytokine expression of perio-dontal ligament fibroblasts[J]. Dent Traumatol, 2018. doi: 10.1111/edt.12404 .
doi: 10.1111/edt.12404
28 Zhai P, Peng X, Li B, et al. The application of hya-luronic acid in bone regeneration[J]. Int J Biol Macromol, 2020, 151: 1224-1239.
29 Ueda-Ichinose Y, Hotokezaka H, Miyazaki T, et al. Lithium reduces orthodontically induced root resorption by suppressing cell death, hyalinization, and odontoclast formation in rats[J]. Angle Orthod, 2022, 92(4): 547-554.
30 Wang C, Li Y, Yu K, et al. HOXA10 inhibit the osteogenic differentiation of periodontal ligament stem cells by regulating β-catenin localization and DKK1 expression[J]. Connect Tissue Res, 2021, 62(4): 393-401.
31 Nemoto E, Koshikawa Y, Kanaya S, et al. Wnt signaling inhibits cementoblast differentiation and promotes proliferation[J]. Bone, 2009, 44(5): 805-812.
32 Huang L, Yin X, Chen J, et al. Lithium chloride promotes osteogenesis and suppresses apoptosis during orthodontic tooth movement in osteoporotic model via regulating autophagy[J]. Bioact Mater, 2021, 6(10): 3074-3084.
33 Poi WR, Carvalho RM, Panzarini SR, et al. Influen-ce of enamel matrix derivative (Emdogain®) and sodium fluoride on the healing process in delayed tooth replantation: histologic and histometric analysis in rats[J]. Dent Traumatol, 2007, 23(1): 35-41.
34 Bai J, Qin M, Zhao YM, et al. Chemical removal of necrotic periodontal ligament on delayed replanted teeth by sodium hypochlorite: morphological analysis and microhardness indentation test of cementum[J]. Int Endod J, 2016, 49(4): 393-401.
35 Ohsugi Y, Niimi H, Shimohira T, et al. In vitro cytological responses against laser photobiomodulation for periodontal regeneration[J]. Int J Mol Sci, 2020, 21(23): 9002.
36 Aoki A, Mizutani K, Taniguchi Y, et al. Current status of Er: YAG laser in periodontal surgery[J]. Jpn Dent Sci Rev, 2024, 60: 1-14.
37 Liu J, Zhou Z, Zhang S. Effects of Er: YAG laser on the attachment of human periodontal ligament fibroblasts to denuded root surfaces simulating delayed replantation cases: an in vitro study[J]. Photobiomodul Photomed Laser Surg, 2020, 38(3): 145-150.
38 Matos FS, Godolphim FJ, Albuquerque-Júnior RL, et al. Laser phototherapy induces angiogenesis in the periodontal tissue after delayed tooth replantation in rats[J]. J Clin Exp Dent, 2018, 10(4): e335-e340.
39 Issa DR, Abdel-Ghaffar KA, Al-Shahat MA, et al. Guided tissue regeneration of intrabony defects with perforated barrier membranes, simvastatin, and EDTA root surface modification: a clinical and biochemical study[J]. J Periodontal Res, 2020, 55(1): 85-95.
40 Davis VL, Abukabda AB, Radio NM, et al. Platelet-rich preparations to improve healing. Part Ⅱ: platelet activation and enrichment, leukocyte inclusion, and other selection criteria[J]. J Oral Implantol, 2014, 40(4): 511-521.
41 Pitzurra L, Jansen IDC, de Vries TJ, et al. Effects of L-PRF and A-PRF+ on periodontal fibroblasts in in vitro wound healing experiments[J]. J Periodontal Res, 2020, 55(2): 287-295.
42 Zhao YH, Zhang M, Liu NX, et al. The combined use of cell sheet fragments of periodontal ligament stem cells and platelet-rich fibrin granules for avulsed tooth reimplantation[J]. Biomaterials, 2013, 34(22): 5506-5520.
43 Behnaz M, Izadi SS, Mashhadi Abbas F, et al. The impact of platelet-rich fibrin (PRF) on delayed tooth replantation: a preliminary animal study[J]. Aust Endod J, 2021, 47(3): 457-466.
44 Yang Y, Bai Y, Li S, et al. Effect of early orthodontic force on periodontal healing after autotransplantation of permanent incisors in beagle dogs[J]. J Periodontol, 2012, 83(2): 235-241.
45 Silva RAB, HAOVieira, de Gregorio C, et al. Perio-dontal ligament repair after active splinting of replanted dogs’ teeth[J]. Dent Traumatol, 2021, 37(6): 758-771.
[1] 陈韫欣,李舒舒,黄梓澄,孔卫东. 切牙管影响上中切牙三维移动的研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 164-171.
[2] 何科泰,徐名颉,周昶含,米金龙,李忆博,刘磊. 三叉神经痛动物模型的研究现状[J]. 国际口腔医学杂志, 2024, 51(2): 217-226.
[3] 斯佳萍,吕林,王思婕,周宇,陈小燕. 不同类型的辅弓在正畸前牙压低中的应用与研究进展[J]. 国际口腔医学杂志, 2024, 51(2): 241-248.
[4] 夏溦瑶,贾仲林. 维生素与唇腭裂发生相关性的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 632-638.
[5] 雷彬,陈柯. 牙本质发育不良Ⅰ型及其分型治疗[J]. 国际口腔医学杂志, 2022, 49(3): 332-336.
[6] 邢桂琪,郭林溪,苏勤. 根管治疗后疾病的综合评估和治疗决策[J]. 国际口腔医学杂志, 2021, 48(5): 579-584.
[7] 王宁祥,刘帅,林良缘,吴娟. 多发性特发性根颈部吸收的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 362-366.
[8] 付琢惠,谭学莲,黄定明. 牙源性上颌窦炎的诊疗策略[J]. 国际口腔医学杂志, 2021, 48(3): 367-372.
[9] 周懿婕,宋光泰. 年轻恒牙挫入性损伤的处理策略[J]. 国际口腔医学杂志, 2021, 48(2): 135-140.
[10] 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483.
[11] 李寒月,夏露露,华先明. 牙周加速成骨正畸临床应用效果的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 206-211.
[12] 陈雪,李纾. 牙颈部外吸收[J]. 国际口腔医学杂志, 2019, 46(5): 516-521.
[13] 周雨曦,雍翔智,江巧芝,陶人川. 口腔慢性移植物抗宿主病的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 609-616.
[14] 张佳喻,罗宁,苗棣,应绚,陈悦. 意向性牙再植治疗重度牙周炎患牙的临床研究[J]. 国际口腔医学杂志, 2019, 46(4): 400-406.
[15] 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!