国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (6): 717-724.doi: 10.7518/gjkq.2020106
Guo Zhiyong1(),Liu Jiyuan2(
),Li Chunjie1,Tang Xiufa1
摘要:
药物相关性颌骨坏死(MRONJ)是一种只发生于颌骨的严重疾病,其发生与抗骨吸收药物和抗血管生成药物有关,如双膦酸盐、狄诺塞麦等。目前临床上缺乏有效的治疗手段。近年来,有关MRONJ发病机制的研究进展非常迅速,但是确切机制尚不清楚。目前有关MRONJ发生机制的主要假说包括骨重建抑制、血管生成抑制、口腔内微生物感染、免疫抑制等学说,还有软组织毒性、颌骨微裂纹等,且其发病可能是多因素协同作用的结果。本文就MRONJ发病机制的研究进展进行综述,以期为进一步的深入研究提供帮助。
中图分类号:
[1] |
Ruggiero SL, Dodson TB, Fantasia J, et al. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw: 2014 update[J]. J Oral Maxillofac Surg, 2014,72(10):1938-1956.
doi: 10.1016/j.joms.2014.04.031 pmid: 25234529 |
[2] |
de Souza Tolentino E, de Castro TF, Michellon FC, et al. Adjuvant therapies in the management of me-dication-related osteonecrosis of the jaws: systematic review[J]. Head Neck, 2019,41(12):4209-4228.
pmid: 31502752 |
[3] |
Weber JB, Camilotti RS, Ponte ME. Efficacy of laser therapy in the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ): a systematic review[J]. Lasers Med Sci, 2016,31(6):1261-1272.
doi: 10.1007/s10103-016-1929-4 pmid: 27025860 |
[4] |
Chang J, Hakam AE, McCauley LK. Current unders-tanding of the pathophysiology of osteonecrosis of the jaw[J]. Curr Osteoporos Rep, 2018,16(5):584-595.
doi: 10.1007/s11914-018-0474-4 pmid: 30155844 |
[5] |
Kimachi K, Kajiya H, Nakayama S, et al. Zoledronic acid inhibits RANK expression and migration of osteoclast precursors during osteoclastogenesis[J]. Naunyn Schmiedebergs Arch Pharmacol, 2011,383(3):297-308.
doi: 10.1007/s00210-010-0596-4 pmid: 21225243 |
[6] |
Sharma D, Ivanovski S, Slevin M, et al. Bisphosphonate- related osteonecrosis of jaw (BRONJ): diagnostic criteria and possible pathogenic mechanisms of an unexpected anti-angiogenic side effect[J]. Vasc Cell, 2013,5(1):1.
doi: 10.1186/2045-824X-5-1 pmid: 23316704 |
[7] |
Jobke B, Milovanovic P, Amling M, et al. Bisphos-phonate-osteoclasts: changes in osteoclast morpho-logy and function induced by antiresorptive nitrogen-containing bisphosphonate treatment in osteoporosis patients[J]. Bone, 2014,59:37-43.
doi: 10.1016/j.bone.2013.10.024 pmid: 24211427 |
[8] |
Rogers MJ, Gordon S, Benford HL, et al. Cellular and molecular mechanisms of action of bisphosphonates[J]. Cancer, 2000,88(12 Suppl):2961-2978.
doi: 10.1002/1097-0142(20000615)88:12+<2961::aid-cncr12>3.3.co;2-c pmid: 10898340 |
[9] |
Zara S, De Colli M, di Giacomo V, et al. Zoledronic acid at subtoxic dose extends osteoblastic stage span of primary human osteoblasts[J]. Clin Oral Investig, 2015,19(3):601-611.
pmid: 25055744 |
[10] |
Giannasi C, Niada S, Farronato D, et al. Nitrogen containing bisphosphonates impair the release of bone homeostasis mediators and matrix production by human primary pre-osteoblasts[J]. Int J Med Sci, 2019,16(1):23-32.
pmid: 30662325 |
[11] |
Manzano-Moreno FJ, Ramos-Torrecillas J, Me-lguizo-Rodríguez L, et al. Bisphosphonate modula-tion of the gene expression of different markers involved in osteoblast physiology: possible im-plications in bisphosphonate-related osteonecrosis of the jaw[J]. Int J Med Sci, 2018,15(4):359-367.
doi: 10.7150/ijms.22627 pmid: 29511371 |
[12] |
Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphos-phonate therapy[J]. N Engl J Med, 2009,360(1):53-62.
doi: 10.1056/NEJMoa0802633 pmid: 19118304 |
[13] |
Córdova LA, Guilbaud F, Amiaud J, et al. Severe compromise of preosteoblasts in a surgical mouse model of bisphosphonate-associated osteonecrosis of the jaw[J]. J Craniomaxillofac Surg, 2016,44(9):1387-1394.
doi: 10.1016/j.jcms.2016.07.015 pmid: 27519659 |
[14] |
Zhu SP, Yao F, Qiu H, et al. Coupling factors and exosomal packaging microRNAs involved in the regulation of bone remodelling[J]. Biol Rev Camb Philos Soc, 2018,93(1):469-480.
pmid: 28795526 |
[15] |
Hattner R, Epker BN, Frost HM. Suggested sequen-tial mode of control of changes in cell behaviour in adult bone remodelling[J]. Nature, 1965,206(983):489-490.
doi: 10.1038/206489a0 pmid: 5319106 |
[16] |
Shimizu E, Tamasi J, Partridge NC. Alendronate affects osteoblast functions by crosstalk through EphrinB1-EphB[J]. J Dent Res, 2012,91(3):268-274.
pmid: 22180568 |
[17] |
Di Salvatore M, Orlandi A, Bagalà C, et al. Anti-tumour and anti-angiogenetic effects of zoledronic acid on human non-small-cell lung cancer cell line[J]. Cell Prolif, 2011,44(2):139-146.
pmid: 21401755 |
[18] |
Lelièvre L, Clézardin P, Magaud L, et al. Comparative study of neoadjuvant chemotherapy with and without zometa for management of locally advanced breast cancer with serum VEGF as primary endpoint: the NEOZOL study[J]. Clin Breast Cancer, 2018,18(6):e1311-e1321.
pmid: 30098917 |
[19] |
Wehrhan F, Stockmann P, Nkenke E, et al. Differential impairment of vascularization and angiogenesis in bisphosphonate-associated osteonecrosis of the jaw-related mucoperiosteal tissue[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011,112(2):216-221.
doi: 10.1016/j.tripleo.2011.02.028 pmid: 21664154 |
[20] |
Ferretti G, Fabi A, Carlini P, et al. Zoledronic-acid-induced circulating level modifications of angiogenic factors, metalloproteinases and proinflammatory cytokines in metastatic breast cancer patients[J]. Oncology, 2005,69(1):35-43.
doi: 10.1159/000087286 pmid: 16088233 |
[21] |
Oteri G, Allegra A, Bellomo G, et al. Reduced serum levels of interleukin 17 in patients with osteonecrosis of the jaw and in multiple myeloma subjects after bisphosphonates administration[J]. Cytokine, 2008,43(2):103-104.
pmid: 18585926 |
[22] |
Yamada J, Tsuno NH, Kitayama J, et al. Anti-angio-genic property of zoledronic acid by inhibition of endothelial progenitor cell differentiation[J]. J Surg Res, 2009,151(1):115-120.
doi: 10.1016/j.jss.2008.01.031 pmid: 18619615 |
[23] |
Hasmim M, Bieler G, Rüegg C. Zoledronate inhibits endothelial cell adhesion, migration and survival through the suppression of multiple, prenylation-dependent signaling pathways[J]. J Thromb Haemost, 2007,5(1):166-173.
doi: 10.1111/j.1538-7836.2006.02259.x pmid: 17059425 |
[24] |
Lang M, Zhou Z, Shi L, et al. Influence of zoledronic acid on proliferation, migration, and apoptosis of vascular endothelial cells[J]. Br J Oral Maxillofac Surg, 2016,54(8):889-893.
pmid: 27344431 |
[25] |
Hoefert S, Eufinger H. Sunitinib may raise the risk of bisphosphonate-related osteonecrosis of the jaw: presentation of three cases[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010,110(4):463-469.
pmid: 20692189 |
[26] |
Gnant M, Baselga J, Rugo HS, et al. Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2[J]. J Natl Cancer Inst, 2013,105(9):654-663.
doi: 10.1093/jnci/djt026 pmid: 23425564 |
[27] |
Magremanne M, Lahon M, De Ceulaer J, et al. Unusual bevacizumab-related complication of an oral in-fection[J]. J Oral Maxillofac Surg, 2013,71(1):53-55.
doi: 10.1016/j.joms.2012.03.022 pmid: 22705223 |
[28] |
Misso G, Porru M, Stoppacciaro A, et al. Evaluation of the in vitro and in vivo antiangiogenic effects of denosumab and zoledronic acid[J]. Cancer Biol Ther, 2012,13(14):1491-1500.
pmid: 22990205 |
[29] |
Gao SY, Zheng GS, Wang L, et al. Zoledronate sup-pressed angiogenesis and osteogenesis by inhibiting osteoclasts formation and secretion of PDGF-BB[J]. PLoS One, 2017,12(6):e0179248.
doi: 10.1371/journal.pone.0179248 pmid: 28594896 |
[30] |
Ohlrich EJ, Coates DE, Cullinan MP, et al. The bis-phosphonate zoledronic acid regulates key angio-genesis-related genes in primary human gingival fibroblasts[J]. Arch Oral Biol, 2016,63:7-14.
doi: 10.1016/j.archoralbio.2015.11.013 pmid: 26658366 |
[31] |
Khan AA, Morrison A, Hanley DA, et al. Diagnosis and management of osteonecrosis of the jaw: a syste-matic review and international consensus[J]. J Bone Miner Res, 2015,30(1):3-23.
pmid: 25414052 |
[32] |
Sanchez BC, Chang C, Wu CG, et al. Electron trans-port chain is biochemically linked to pilus assembly required for polymicrobial interactions and biofilm formation in the gram-positive actinobacterium Actinomyces oris[J]. mBio, 2017,8(3):e00399-e00317.
doi: 10.1128/mBio.00399-17 pmid: 28634238 |
[33] |
Kaplan I, Anavi K, Anavi Y, et al. The clinical spec-trum of Actinomyces-associated lesions of the oral mucosa and jawbones: correlations with histomor-phometric analysis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009,108(5):738-746.
doi: 10.1016/j.tripleo.2009.06.019 pmid: 19748292 |
[34] |
Pushalkar S, Li X, Kurago Z, et al. Oral microbiota and host innate immune response in bisphosphonate-related osteonecrosis of the jaw[J]. Int J Oral Sci, 2014,6(4):219-226.
doi: 10.1038/ijos.2014.46 pmid: 25105817 |
[35] | Hinson AM, Smith CW, Siegel ER, et al. Is bisphos-phonate-related osteonecrosis of the jaw an infection? A histological and microbiological ten-year summary[J]. Int J Dent, 2014: 452737. |
[36] |
Russmueller G, Seemann R, Weiss K, et al. The association of medication-related osteonecrosis of the jaw with Actinomyces spp. infection[J]. Sci Rep, 2016,6:31604.
doi: 10.1038/srep31604 pmid: 27530150 |
[37] |
Sedghizadeh PP, Yooseph S, Fadrosh DW, et al. Metagenomic investigation of microbes and viruses in patients with jaw osteonecrosis associated with bisphosphonate therapy[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012,114(6):764-770.
doi: 10.1016/j.oooo.2012.08.444 pmid: 23159114 |
[38] |
Kalyan S, Quabius ES, Wiltfang J, et al. Can peripheral blood γδ T cells predict osteonecrosis of the jaw? An immunological perspective on the adverse drug effects of aminobisphosphonate therapy[J]. J Bone Miner Res, 2013,28(4):728-735.
doi: 10.1002/jbmr.1769 pmid: 22991330 |
[39] |
Silveira FM, Etges A, Correa MB, et al. Microscopic evaluation of the effect of oral microbiota on the development of bisphosphonate-related osteonecrosis of the jaws in rats[J]. J Oral Maxillofac Res, 2016,7(4):e3.
doi: 10.5037/jomr.2016.7403 pmid: 28154747 |
[40] |
Ono T, Okamoto K, Nakashima T, et al. IL-17-producing γδ T cells enhance bone regeneration[J]. Nat Commun, 2016,7:10928.
doi: 10.1038/ncomms10928 pmid: 26965320 |
[41] |
Wolf AM, Rumpold H, Tilg H, et al. The effect of zoledronic acid on the function and differentiation of myeloid cells[J]. Haematologica, 2006,91(9):1165-1171.
pmid: 16956814 |
[42] |
Orsini G, Failli A, Legitimo A, et al. Zoledronic acid modulates maturation of human monocyte-derived dendritic cells[J]. Exp Biol Med (Maywood), 2011,236(12):1420-1426.
doi: 10.1258/ebm.2011.011168 |
[43] |
Zhang QZ, Atsuta I, Liu SY, et al. IL-17-mediated M1/M2 macrophage alteration contributes to patho-genesis of bisphosphonate-related osteonecrosis of the jaws[J]. Clin Cancer Res, 2013,19(12):3176-3188.
doi: 10.1158/1078-0432.CCR-13-0042 pmid: 23616636 |
[44] |
Movila A, Mawardi H, Nishimura K, et al. Possible pathogenic engagement of soluble semaphorin 4D produced by γδT cells in medication-related osteone-crosis of the jaw (MRONJ)[J]. Biochem Biophys Res Commun, 2016,480(1):42-47.
doi: 10.1016/j.bbrc.2016.10.012 pmid: 27720716 |
[45] |
Park S, Kanayama K, Kaur K, et al. Osteonecrosis of the jaw developed in mice: disease variants regulated by γδ t cells in oral mucosal barrier immunity[J]. J Biol Chem, 2015,290(28):17349-17366.
doi: 10.1074/jbc.M115.652305 pmid: 26013832 |
[46] |
Hagelauer N, Pabst AM, Ziebart T, et al. In vitro effects of bisphosphonates on chemotaxis, phagocytosis, and oxidative burst of neutrophil granulocytes[J]. Clin Oral Investig, 2015,19(1):139-148.
pmid: 24668343 |
[47] |
Jin HM, Kee SJ, Cho YN, et al. Dysregulated osteo-clastogenesis is related to natural killer T cell dys-function in rheumatoid arthritis[J]. Arthritis Rheumatol, 2015,67(10):2639-2650.
pmid: 26097058 |
[48] | Tseng HC, Kanayama K, Kaur K, et al. Bisphosphonate- induced differential modulation of immune cell function in gingiva and bone marrow in vivo: role in osteoclast-mediated NK cell activation[J]. Oncotar-get, 2015,6(24):20002-20025. |
[49] |
Grassi F, Manferdini C, Cattini L, et al. T cell sup-pression by osteoclasts in vitro[J]. J Cell Physiol, 2011,226(4):982-990.
doi: 10.1002/jcp.22411 |
[50] | Ziebart T, Halling F, Heymann P, et al. Impact of soft tissue pathophysiology in the development and maintenance of bisphosphonate-related osteonecrosis of the jaw (BRONJ)[J]. Dent J (Basel), 2016,4(4):E36. |
[51] |
Pabst AM, Ziebart T, Koch FP, et al. The influence of bisphosphonates on viability, migration, and apo-ptosis of human oral keratinocytes: in vitro study[J]. Clin Oral Investig, 2012,16(1):87-93.
doi: 10.1007/s00784-010-0507-6 pmid: 21225298 |
[52] |
Jung J, Park JS, Righesso L, et al. Effects of an oral bisphosphonate and three intravenous bisphosphonates on several cell types in vitro[J]. Clin Oral Investig, 2018,22(7):2527-2534.
doi: 10.1007/s00784-018-2349-6 pmid: 29388023 |
[53] |
Landesberg R, Cozin M, Cremers S, et al. Inhibition of oral mucosal cell wound healing by bisphosphonates[J]. J Oral Maxillofac Surg, 2008,66(5):839-847.
doi: 10.1016/j.joms.2008.01.026 pmid: 18423269 |
[54] |
Li J, Mashiba T, Burr DB. Bisphosphonate treatment suppresses not only stochastic remodeling but also the targeted repair of microdamage[J]. Calcif Tissue Int, 2001,69(5):281-286.
pmid: 11768198 |
[55] |
Allen MR, Burr DB. Mandible matrix necrosis in beagle dogs after 3 years of daily oral bisphosphonate treatment[J]. J Oral Maxillofac Surg, 2008,66(5):987-994.
doi: 10.1016/j.joms.2008.01.038 pmid: 18423290 |
[56] |
Hoefert S, Schmitz I, Tannapfel A, et al. Importance of microcracks in etiology of bisphosphonate-related osteonecrosis of the jaw: a possible pathogenetic model of symptomatic and non-symptomatic os-teonecrosis of the jaw based on scanning electron microscopy findings[J]. Clin Oral Investig, 2010,14(3):271-284.
doi: 10.1007/s00784-009-0300-6 pmid: 19536569 |
[57] |
Kim JW, Landayan ME, Lee JY, et al. Role of micro-cracks in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw[J]. Clin Oral Investig, 2016,20(8):2251-2258.
doi: 10.1007/s00784-016-1718-2 |
[58] | Guo Z, Cui W, Que L, et al. Pharmacogenetics of medication-related osteonecrosis of the jaw: a syste-matic review and meta-analysis[J]. Int J Oral Maxil-lofac Surg, 2020,49(3):298-309. |
[59] |
Sarasquete ME, García-Sanz R, Marín L, et al. Bis-phosphonate-related osteonecrosis of the jaw is associated with polymorphisms of the cytochrome P450 CYP2C8 in multiple myeloma: a genome-wide single nucleotide polymorphism analysis[J]. Blood, 2008,112(7):2709-2712.
doi: 10.1182/blood-2008-04-147884 pmid: 18594024 |
[60] |
Arduino PG, Menegatti E, Scoletta M, et al. Vascular endothelial growth factor genetic polymorphisms and haplotypes in female patients with bisphosphonate-related osteonecrosis of the jaws[J]. J Oral Pathol Med, 2011,40(6):510-515.
pmid: 21251073 |
[61] |
Di Martino MT, Arbitrio M, Guzzi PH, et al. A peroxisome proliferator-activated receptor gamma (PPARG) polymorphism is associated with zole-dronic acid-related osteonecrosis of the jaw in multi-ple myeloma patients: analysis by DMET microarray profiling[J]. Br J Haematol, 2011,154(4):529-533.
pmid: 21517810 |
[62] |
Choi H, Lee JH, Kim HJ, et al. Genetic association between VEGF polymorphisms and BRONJ in the Korean population[J]. Oral Dis, 2015,21(7):866-871.
pmid: 26086871 |
[63] |
Holtmann H, Lommen J, Kübler NR, et al. Patho-genesis of medication-related osteonecrosis of the jaw: a comparative study of in vivo and in vitro trials[J]. J Int Med Res, 2018,46(10):4277-4296.
doi: 10.1177/0300060518788987 pmid: 30091399 |
[1] | 王淳艺,李精韬. 罕见下颌骨及下唇复制畸形1例及相关文献回顾[J]. 国际口腔医学杂志, 2023, 50(4): 452-456. |
[2] | 李沛然,毕瑞野,王旻,王瑞宇,刘尧,姜楠,曹品银,祝颂松. 上颌Le Fort Ⅰ前徙术与前份根尖下截骨后退术术后软组织变化的比较研究[J]. 国际口腔医学杂志, 2023, 50(3): 293-301. |
[3] | 陈小利,张帆,刘程程. 光生物调节在放射治疗后口腔并发症防治中的应用进展[J]. 国际口腔医学杂志, 2022, 49(6): 707-716. |
[4] | 戢晓,朱桂全. 维生素D与药物相关性颌骨坏死关系的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 441-447. |
[5] | 黎静文,周力. 颈椎成熟法评估下颌骨骨龄的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 337-342. |
[6] | 杨赟琪,林阳阳,侯敏. 手术优先模式颌骨稳定性及影响因素研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 227-232. |
[7] | 丁张帆,郭陟永,苗诚,李春洁,宣鸣,王晓毅,张壮. 基于锥形束CT的三维可视化技术在颌骨囊性病变手术中的应用[J]. 国际口腔医学杂志, 2021, 48(2): 180-186. |
[8] | 付世锦,曾刊,李鑫,杨静,汪成林,叶玲. 骨保护素/核因子κB受体活化因子配体影响肺癌细胞下颌骨与股骨转移差异的初步研究[J]. 国际口腔医学杂志, 2020, 47(5): 538-546. |
[9] | 张恺文,赵雪峰,舒睿,韩向龙. 上颌骨性扩弓器的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 484-490. |
[10] | 林阳阳,侯敏. 双侧下颌支矢状骨劈开术对下颌近心骨段位移变化的影响[J]. 国际口腔医学杂志, 2019, 46(6): 718-723. |
[11] | 王小萌,王晓,史册,孙宏晨,黄洋. 骨形态发生蛋白信号通路及其交叉对话对下颌骨发育的影响[J]. 国际口腔医学杂志, 2019, 46(3): 258-262. |
[12] | 何映酉,乎森,李继华. 外科辅助快速上颌扩张的临床研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 343-348. |
[13] | 乔翔鹤, 李龙江. 上颌骨肿瘤切除后眶底缺损的即刻修复重建[J]. 国际口腔医学杂志, 2017, 44(6): 737-742. |
[14] | 娄慧全, 王卫红, 许彪, 张伯俊. 单段腓骨肌皮瓣在修复Ⅱ型上颌骨缺损中的应用[J]. 国际口腔医学杂志, 2017, 44(5): 576-579. |
[15] | 章茜, 杨旭东. 颌骨囊性病变开窗减压术疗效评价方法的研究进展[J]. 国际口腔医学杂志, 2017, 44(4): 493-496. |
|