国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (6): 748-754.doi: 10.7518/gjkq.2025086

• 正畸专栏 • 上一篇    下一篇

无托槽隐形矫治上颌扩弓效率的影响因素

唐子尉(),晋瑜,赖文莉()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院正畸科 成都 610041
  • 收稿日期:2024-05-17 修回日期:2025-07-06 出版日期:2025-11-01 发布日期:2025-10-23
  • 通讯作者: 赖文莉
  • 作者简介:唐子尉,博士,Email:745749262@qq.com

Factors influencing the efficiency of maxillary expansion in clear aligner orthodontic treatment

Ziwei Tang(),Yu Jin,Wenli Lai()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-05-17 Revised:2025-07-06 Online:2025-11-01 Published:2025-10-23
  • Contact: Wenli Lai

摘要:

目的 探究无托槽隐形矫治(CAT)过程中上颌扩弓效率的影响因素。 方法 筛选54名上颌扩弓矫治的非拔牙CAT患者,收集其基线数据,通过锥形束计算机断层扫描(CBCT)测量其牙冠和牙根长度,模型重叠测量其上颌扩弓效率和转矩变化,通过线性分析探究影响扩弓效率的因素。 结果 单因素线性分析中发现,年龄、牙根长度、冠根比、附件设计、设计扩弓量和实际-设计转矩变化对上颌第一磨牙扩弓效率有影响(P<0.05)。逐步多因素线性分析中发现,冠根比、16和26牙的实际-设计转矩对上颌第一磨牙扩弓效率有显著影响(P<0.05)。 结论 在CAT扩弓矫治过程中,需要注意患者的冠根比,设计方案时需要双侧磨牙设计附件并注意扩弓量的限制,以增加患者扩弓效率。

关键词: 上颌扩弓, 无托槽隐形矫治, 锥形束计算机断层扫描

Abstract:

Objective To assess the factors influencing the efficiency of maxillary expansion during clear aligner treatment (CAT). Methods A total of 54 nonextraction CAT patients undergoing maxillary expansion were selected. Baseline data were collected, and crown lengths were measured via cone-beam computed tomography (CBCT). A model overlap was used to measure the maxillary expansion efficiency and torque changes. Linear analysis was performed to identify factors influencing expansion efficiency. Results Single-factor linear analysis revealed that maxillary first-molar expansion efficiency was significantly influenced by age, root length, crown-root ratio, attachment design, designed and actual expansion amount, actual torque changes, and designed-actual torque changes (P<0.05). Stepwise multivariate linear ana-lysis identified the crown-root ratio, attachment design, and designed and actual expansion amount as significantly affec-ting maxillary first-molar expansion efficiency (P<0.05). Conclusion During CAT expansion treatment, to the focus should be on the patient’s crown-root ratio. Bilateral attachment design and careful consideration of expansion amount limits in treatment planning are crucial to enhancing patient expansion efficiency.

Key words: maxillary expansion, clear aligner treatment, cone-beam computed tomography

中图分类号: 

  • R783.5

图 1

使用Invivo测量上颌第一磨牙牙冠长度和牙根长度A:从横断面摆正第一磨牙位置;B:从冠状面确定近中颊尖和近中颊根的位置;C:从矢状面测量第一磨牙的牙根长度和牙冠长度(牙根长度:长箭头,从釉牙骨质界到近中根尖;牙冠长度:短箭头,从釉牙骨质界到近中颊尖)。"

图 2

使用Geomagic Wrap 2021进行模型重叠和测量A:模型重叠;B:牙弓宽度测量;C:第一磨牙转矩测量。"

表 1

临床特征基线数据"

临床特征x±s)/n
年龄/岁27.02±6.88
性别
10
44
治疗时间/月24.97±9.79
安氏分类
Ⅰ类28
Ⅱ类19
Ⅲ类7
颌间牵引
无牵引19
Ⅱ类牵引27
Ⅲ类牵引8
IPR/mm0.52±1.03
附件16牙
无附件17
水平矩形附件19
垂直矩形附件3
优化附件15
附件26牙
无附件17
水平矩形附件24
垂直矩形附件4
优化附件9
附件16、26牙
无附件12
16或26牙有附件13
16、26牙均有附件29
16牙牙冠长度/mm5.99±0.37
16牙牙根长度/mm13.19±1.31
26牙牙冠长度/mm5.93±0.38
26牙牙根长度/mm13.01±1.38
16牙冠根比0.46±0.05
26牙冠根比0.46±0.06
16牙设计转矩/(°)a0.43±3.82
16牙实际-设计转矩/(°)b-1.04±2.36
26牙设计转矩/(°)a-0.56±3.11
26牙实际-设计转矩/(°)b-0.54±2.99

表 2

不同牙位设计扩弓量与实际扩弓量的比较"

牙位数量设计扩弓量/mm实际扩弓量/mm扩弓实现率/%P
13—23牙422.48±1.651.84±1.3772.48±15.65P<0.001
14—24牙493.08±1.262.50±1.2479.29±16.54P<0.001
15—25牙523.19±1.652.64±1.4282.65±14.74P<0.001
16—26牙542.67±1.512.09±1.3675.65±15.12P<0.001
17—27牙361.61±1.061.13±0.8370.18±18.92P<0.001

图 3

不同牙位扩弓量和扩弓效率的比较*:P<0.05;**:P<0.01。"

表 3

上颌第一磨牙扩弓效率的单因素线性分析"

测量项目扩弓实现率/%Pβ95%置信区间
年龄/岁0.013-0.74-1.30~-0.18
治疗时间/月0.8890.03-0.39~0.45
上颌IPR/mm0.382-1.79-5.76~2.18
16牙牙冠长度/mm0.3075.77-5.20~16.74
16牙牙根长度/mm<0.001-7.18-9.63~-4.74
26牙牙冠长度/mm0.2186.79-3.89~17.47
26牙牙根长度/mm<0.001-6.86-9.18~-4.54
16牙冠根比<0.001194.80130.65~258.95
26牙冠根比<0.001158.19101.27~215.11
16—26牙设计扩弓量/mm0.0253.060.47~5.65
16牙设计转矩/(°)0.2970.57-0.49~1.64
16牙实际-设计转矩/(°)<0.0014.272.98~5.57
26牙设计转矩/(°)0.2050.85-0.45~2.15
26牙实际-设计转矩/(°)<0.0013.622.66~4.58
性别
69.12±14.95参照
77.14±14.930.1318.02-2.23~18.27
安氏分类
Ⅰ类76.06±15.62参照
Ⅱ类74.38±16.130.715-1.68-10.64~7.28
Ⅲ类77.45±15.120.8321.39-11.35~14.12
牵引
无牵引75.85±15.35参照
Ⅱ类牵引75.27±16.580.900-0.58-9.63~8.46
Ⅲ类牵引76.47±10.100.9250.61-12.11~13.34
附件16牙
无附件62.95±13.35参照
水平矩形附件82.75±22.79<0.00119.8011.57~28.02
垂直矩形附件86.58±5.360.00423.638.20~39.06
优化附件78.87±13.34<0.00115.927.19~24.65
附件26牙
无附件64.62±14.18参照
水平矩形附件85.55±9.19<0.00120.9313.74~28.13
垂直矩形附件83.59±11.950.00518.986.37~31.58
优化附件66.57±11.800.6841.95-7.40~11.30
附件16、26牙
无附件62.95±13.88参照
单侧附件68.73±13.590.2405.78-3.75~15.32
双侧附件84.01±15.12<0.00121.0612.88~29.24

表 4

上颌第一磨牙扩弓效率的逐步多因素线性分析"

测量项目Pβ95%置信区间
16牙冠根比0.04758.152.26~114.05
26牙冠根比0.02456.899.32~104.46
16牙实际-设计转矩/(°)0.0291.32-19.30~-8.69
26牙实际-设计转矩/(°)0.0431.1211.51~24.43
附件26牙
无附件参照
水平矩形附件0.2363.89-2.45~10.24
垂直矩形附件0.2265.58-3.33~14.48
优化附件0.099-5.86-12.68~0.95
附件16、26牙
无附件参照
单侧附件0.6721.55-5.58~8.68
双侧附件0.0706.61-0.35~13.58
[1] Ali SAAH, Miethke HR. Invisalign, an innovative invisible orthodontic appliance to correct malocclusions: advantages and limitations[J]. Dent Update, 2012, 39(4): 254-256, 258-260.
[2] Vlaskalic V, Boyd R. Orthodontic treatment of a mildly crowded malocclusion using the Invisalign System[J]. Aust Orthod J, 2001, 17(1): 41-46.
[3] Barreda GJ, Dzierewianko EA, Mazza V, et al. Expansion treatment using Invisalign®: periodontal health status and maxillary buccal bone changes. A clinical and tomographic evaluation[J]. Acta Odontol Latinoam, 2020, 33(2): 69-81.
[4] Zhou N, Guo J. Efficiency of upper arch expansion with the Invisalign system[J]. Angle Orthod, 2020, 90(1): 23-30.
[5] 高琳, 李巍然, 林久祥. 模型重叠评价上颌切牙牙轴变化的可靠性研究[J]. 口腔医学, 2010, 30(9): 529-531.
Gao L, Li WR, Lin JX. Reliability of change of incisor inclination based on model superimposition[J]. Stomatology, 2010, 30(9): 529-531.
[6] Gatsonis C, Sampson AR. Multiple correlation: exact power and sample size calculations[J]. Psychol Bull, 1989, 106(3): 516-524.
[7] Benton D, Krishnamoorthy K. Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient[J]. Comput Stat Data Anal, 2003, 43(2): 249-267.
[8] Krishnamoorthy K, Xia YP. Sample size calculation for estimating or testing a nonzero squared multiple correlation coefficient[J]. Multivariate Behav Res, 2008, 43(3): 382-410.
[9] Vanarsdall RL, White RP Jr. Three-dimensional analysis for skeletal problems[J]. Int J Adult Or-thodon Orthognath Surg, 1994, 9(3): 159.
[10] Vanarsdall RL. Transverse dimension and long-term stability[J]. Semin Orthod, 1999, 5(3): 171-180.
[11] Womack WR, Ahn JH, Ammari Z, et al. A new approach to correction of crowding[J]. Am J Orthod Dentofacial Orthop, 2002, 122(3): 310-316.
[12] D’Antò V, Valletta R, Di Mauro L, et al. The predic-tability of transverse changes in patients treated with clear aligners[J]. Materials (Basel), 2023, 16(5): 1910.
[13] Betts NJ, Vanarsdall RL, Barber HD, et al. Diagnosis and treatment of transverse maxillary deficiency[J]. Int J Adult Orthodon Orthognath Surg, 1995, 10(2): 75-96.
[14] Felton JM, Sinclair PM, Jones DL, et al. A compu-terized analysis of the shape and stability of mandi-bular arch form[J]. Am J Orthod Dentofacial Orthop, 1987, 92(6): 478-483.
[15] Houle JP, Piedade L, Todescan R Jr, et al. The predictability of transverse changes with invisalign[J]. Angle Orthod, 2017, 87(1): 19-24.
[16] Sayin MO, Turkkahraman H. Comparison of dental arch and alveolar widths of patients with Class Ⅱ, division 1 malocclusion and subjects with Class Ⅰ ideal occlusion[J]. Angle Orthod, 2004, 74(3): 356-360.
[17] Anand M, Turpin DL, Jumani KS, et al. Retrospective investigation of the effects and efficiency of self-ligating and conventional brackets[J]. Am J Orthod Dentofacial Orthop, 2015, 148(1): 67-75.
[18] Galan-Lopez L, Barcia-Gonzalez J, Plasencia E. A systematic review of the accuracy and efficiency of dental movements with Invisalign® [J]. Korean J Orthod, 2019, 49(3): 140-149.
[19] Riede U, Wai S, Neururer S, et al. Maxillary expansion or contraction and occlusal contact adjustment: effectiveness of current aligner treatment[J]. Clin Oral Investig, 2021, 25(7): 4671-4679.
[20] Lione R, Paoloni V, Bartolommei L, et al. Maxillary arch development with invisalign system[J]. Angle Orthod, 2021, 91(4): 433-440.
[1] 李汪儒,杨璞. 隐形拔牙矫治不同垂直骨面型上颌前牙移动特征的三维有限元研究[J]. 国际口腔医学杂志, 2025, 52(1): 69-75.
[2] 刘盼明,李政泽,李军鹤,崔淑霞. 成人骨性Ⅱ类患者不同垂直骨面型上颌窦容积及口咽气道体积的锥形束计算机断层扫描研究[J]. 国际口腔医学杂志, 2023, 50(5): 528-537.
[3] 吕欣,樊永杰. 无托槽隐形矫治技术研究热点的可视化分析[J]. 国际口腔医学杂志, 2023, 50(1): 72-81.
[4] 刘力嘉,毛婧,龙欢,蒲亚龙,王军. 二维与三维头影测量自动定点的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 100-108.
[5] 周梦琪,陈学鹏,傅柏平. 正畸治疗中牙槽骨骨开窗骨开裂的预防和应对策略[J]. 国际口腔医学杂志, 2021, 48(5): 600-608.
[6] 伍春兰,唐华,陈军. 成人骨性Ⅱ类高角开牙合患者上下切牙区牙槽骨形态的三维研究[J]. 国际口腔医学杂志, 2021, 48(4): 426-432.
[7] 张世珍,赖文莉. 骨性Ⅲ类错牙合畸形上颌骨前牵引方法及辅助扩弓的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 354-361.
[8] 王立冬,马文,付帅,张长彬,崔庆赢,梁燕,黎明. 不同方法制作正颌手术数字化牙合板的研究及精确性分析[J]. 国际口腔医学杂志, 2021, 48(2): 156-164.
[9] 张紫涵,熊鑫,王军. 三维头影测量的研究现状和应用发展[J]. 国际口腔医学杂志, 2020, 47(6): 739-744.
[10] 张恺文,赵雪峰,舒睿,韩向龙. 上颌骨性扩弓器的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 484-490.
[11] 赖文莉. 无托槽隐形矫治技术推磨牙向后的临床应用策略[J]. 国际口腔医学杂志, 2019, 46(4): 373-382.
[12] 冯旭,张祎,李梦红,刘楠,王六一,胡敏. 无托槽隐形矫治对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 166-170.
[13] 柯正建,黄诗言,徐舒豪,李小兵. 个体化口腔健康宣教对无托槽隐形矫治青少年患者口腔卫生状况的影响[J]. 国际口腔医学杂志, 2018, 45(5): 534-538.
[14] 刘晓华, 王恩博. 儿童埋伏多生牙拔除术锥形束计算机断层扫描影像学定位的应用进展[J]. 国际口腔医学杂志, 2018, 45(3): 295-300.
[15] 尹一佳, 冯捷, 罗梦奇, 韩向龙. 三维立体摄影技术自然头位校正方法的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 301-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!