国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (5): 594-605.doi: 10.7518/gjkq.2025061
摘要:
对于牙髓坏死的年轻恒牙,目前临床上多采用牙髓血运重建术进行治疗。因该方法无法重建功能性牙髓样组织,并可能导致根管钙化,因此再生牙髓治疗引起了广泛关注。牙髓组织再生的目的是恢复自体牙髓组织的活性与功能,其成功的关键因素是快速形成功能性血管网。根管和髓腔作为一种相对狭窄、密闭、缺血缺氧的环境,功能性血管网从根管长到髓腔的过程非常缓慢,因此预血管化技术应运而生。该技术是在牙髓的工程化组织构建中预先形成功能性血管网络,确保为构建体提供足够的血液供应;然后将血管网络与宿主脉管系统吻合,最终诱导血管化牙髓组织再生。本文综述了基于支架的预血管化技术在细胞、生长因子和支架方面的研究进展,同时也总结了与预血管化相关的三维生物打印技术及其应用,以期为再生医学发展提供理论依据。
中图分类号:
[1] | Kim JY, Xin XJ, Moioli EK, et al. Regeneration of dental-pulp-like tissue by chemotaxis-induced cell homing[J]. Tissue Eng Part A, 2010, 16(10): 3023-3031. |
[2] | Utzinger U, Baggett B, Weiss JA, et al. Large-scale time series microscopy of neovessel growth during angiogenesis[J]. Angiogenesis, 2015, 18(3): 219-232. |
[3] | Dellaquila A, Le Bao C, Letourneur D, et al. In vitro strategies to vascularize 3D physiologically relevant models[J]. Adv Sci, 2021, 8(19): e2100798. |
[4] | Ruan Q, Tan SL, Guo L, et al. Prevascularization techniques for dental pulp regeneration: potential cell sources, intercellular communication and construction strategies[J]. Front Bioeng Biotechnol, 2023, 11: 1186030. |
[5] | Guo SW, Redenski I, Landau S, et al. Prevascula-rized scaffolds bearing human dental pulp stem cells for treating complete spinal cord injury[J]. Adv Healthc Mater, 2020, 9(20): e2000974. |
[6] | Xie Z, Shen ZS, Zhan PM, et al. Functional dental pulp regeneration: basic research and clinical translation[J]. Int J Mol Sci, 2021, 22(16): 8991. |
[7] | Sugiaman VK, Jeffrey, Naliani S, et al. Polymeric scaffolds used in dental pulp regeneration by tissue engineering approach[J]. Polymers, 2023, 15(5): 1082. |
[8] | Kumar JK, Surendranath P, Eswaramoorthy R. Regeneration of immature incisor using platelet rich fibrin: report of a novel clinical application[J]. BMC Oral Health, 2023, 23(1): 69. |
[9] | Jung C, Kim S, Sun T, et al. Pulp-dentin regeneration: current approaches and challenges[J]. J Tissue Eng, 2019, 10: 2041731418819263. |
[10] | Siddiqui Z, Acevedo-Jake AM, Griffith A, et al. Cells and material-based strategies for regenerative endodontics[J]. Bioact Mater, 2022, 14: 234-249. |
[11] | Moussa DG, Aparicio C. Present and future of tissue engineering scaffolds for dentin-pulp complex regeneration[J]. J Tissue Eng Regen Med, 2019, 13(1): 58-75. |
[12] | Fagogeni I, Metlerska J, Lipski M, et al. Materials used in regenerative endodontic procedures and their impact on tooth discoloration[J]. J Oral Sci, 2019, 61(3): 379-385. |
[13] | Nakashima M, Iohara K, Bottino MC, et al. Animal models for stem cell-based pulp regeneration: foundation for human clinical applications[J]. Tissue Eng Part B Rev, 2019, 25(2): 100-113. |
[14] | Labour MN, Le Guilcher C, Aid-Launais R, et al. Development of 3D hepatic constructs within polysaccharide-based scaffolds with tunable properties[J]. Int J Mol Sci, 2020, 21(10): 3644. |
[15] | Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract[J]. Dent Traumatol, 2001, 17(4): 185-187. |
[16] | Gupte MJ, Ma PX. Nanofibrous scaffolds for dental and craniofacial applications[J]. J Dent Res, 2012, 91(3): 227-234. |
[17] | Sugiaman VK, Djuanda R, Pranata N, et al. Tissue engineering with stem cell from human exfoliated deciduous teeth (SHED) and collagen matrix, regulated by growth factor in regenerating the dental pulp[J]. Polymers, 2022, 14(18): 3712. |
[18] | Kulebyakin KY, Nimiritsky PP, Makarevich PI. Growth factors in regeneration and regenerative medicine: “the cure and the cause”[J]. Front Endocrinol, 2020, 11: 384. |
[19] | Park Y, Huh KM, Kang SW. Applications of biomaterials in 3D cell culture and contributions of 3D cell culture to drug development and basic biomedical research[J]. Int J Mol Sci, 2021, 22(5): 2491. |
[20] | Jazayeri HE, Lee SM, Kuhn L, et al. Polymeric scaffolds for dental pulp tissue engineering: a review[J]. Dent Mater, 2020, 36(2): e47-e58. |
[21] | Dissanayaka WL, Zhang CF. The role of vasculature engineering in dental pulp regeneration[J]. J Endod, 2017, 43(9S): S102-S106. |
[22] | Smirani R, Rémy M, Devillard R, et al. Engineered prevascularization for oral tissue grafting: a systema-tic review[J]. Tissue Eng Part B Rev, 2020, 26(4): 383-398. |
[23] | Deegan AJ, Hendrikson WJ, El Haj AJ, et al. Regulation of endothelial cell arrangements within hMSC-HUVEC co-cultured aggregates[J]. Biomed J, 2019, 42(3): 166-177. |
[24] | Lin LM, Ricucci D, Huang GT. Regeneration of the dentine-pulp complex with revitalization/revasculari-zation therapy: challenges and hopes[J]. Int Endod J, 2014, 47(8): 713-724. |
[25] | Wang XJ, Thibodeau B, Trope M, et al. Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis[J]. J Endod, 2010, 36(1): 56-63. |
[26] | Iohara K, Imabayashi K, Ishizaka R, et al. Complete pulp regeneration after pulpectomy by transplantation of CD105+ stem cells with stromal cell-derived factor-1[J]. Tissue Eng Part A, 2011, 17(15/16): 1911-1920. |
[27] | Ishizaka R, Hayashi Y, Iohara K, et al. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp[J]. Biomate-rials, 2013, 34(8): 1888-1897. |
[28] | Murray PE, Garcia-Godoy F, Hargreaves KM. Regenerative endodontics: a review of current status and a call for action[J]. J Endod, 2007, 33(4): 377-390. |
[29] | Hargreaves KM, Geisler T, Henry M, et al. Regene-ration potential of the young permanent tooth: what does the future hold[J]. Pediatr Dent, 2008, 30(3): 253-260. |
[30] | Wright ME, Yu JK, Jain D, et al. Engineering functional microvessels in synthetic polyurethane random-pore scaffolds by harnessing perfusion flow[J]. Biomaterials, 2020, 256: 120183. |
[31] | Piard C, Jeyaram A, Liu Y, et al. 3D printed HUVECs/MSCs cocultures impact cellular interactions and angiogenesis depending on cell-cell distance[J]. Biomaterials, 2019, 222: 119423. |
[32] | Mazio C, Casale C, Imparato G, et al. Pre-vascula-rized dermis model for fast and functional anastomosis with host vasculature[J]. Biomaterials, 2019, 192: 159-170. |
[33] | Groger A, Megas IF, Noah EM, et al. Proliferation of endothelial cells (HUVEC) on specific-modified collagen sponges loaded with different growth factors[J]. Int J Artif Organs, 2021, 44(11): 880-886. |
[34] | Wang Y, Kankala RK, Ou CW, et al. Advances in hydrogel-based vascularized tissues for tissue repair and drug screening[J]. Bioact Mater, 2022, 9: 198-220. |
[35] | Harding A, Cortez-Toledo E, Magner NL, et al. Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways[J]. Stem Cells, 2017, 35(4): 909-919. |
[36] | Orti V, Collart-Dutilleul PY, Piglionico S, et al. Pulp regeneration concepts for nonvital teeth: from tissue engineering to clinical approaches[J]. Tissue Eng Part B Rev, 2018, 24(6): 419-442. |
[37] | Zhang WB, Walboomers XF, Shi ST, et al. Multi-lineage differentiation potential of stem cells derived from human dental pulp after cryopreservation[J]. Tissue Eng, 2006, 12(10): 2813-2823. |
[38] | Pilbauerova N, Soukup T, Suchankova Kleplova T, et al. The effect of cultivation passaging on the relative telomere length and proliferation capacity of dental pulp stem cells[J]. Biomolecules, 2021, 11(3): 464. |
[39] | Duarte Campos DF, Zhang SY, Kreimendahl F, et al. Hand-held bioprinting for de novo vascular formation applicable to dental pulp regeneration[J]. Connect Tissue Res, 2020, 61(2): 205-215. |
[40] | Shopova D, Mihaylova A, Yaneva A, et al. Advan-cing dentistry through bioprinting: personalization of oral tissues[J]. J Funct Biomater, 2023, 14(10): 530. |
[41] | Chrepa V, Pitcher B, Henry MA, et al. Survival of the apical papilla and its resident stem cells in a case of advanced pulpal necrosis and apical perio-dontitis[J]. J Endod, 2017, 43(4): 561-567. |
[42] | Lin LM, Kim SG, Martin G, et al. Continued root maturation despite persistent apical periodontitis of immature permanent teeth after failed regenerative endodontic therapy[J]. Aust Endod J, 2018, 44(3): 292-299. |
[43] | Nada OA, El Backly RM. Stem cells from the apical papilla (SCAP) as a tool for endogenous tissue regeneration[J]. Front Bioeng Biotechnol, 2018, 6: 103. |
[44] | Yi BC, Dissanayaka WL, Zhang CF. Growth factors and small-molecule compounds in derivation of endothelial lineages from dental stem cells[J]. J Endod, 2020, 46(9S): S63-S70. |
[45] | Nowwarote N, Petit S, Ferre FC, et al. Extracellular matrix derived from dental pulp stem cells promotes mineralization[J]. Front Bioeng Biotechnol, 2021, 9: 740712. |
[46] | Huang GT, Shagramanova K, Chan SW. Formation of odontoblast-like cells from cultured human dental pulp cells on dentin in vitro [J]. J Endod, 2006, 32(11): 1066-1073. |
[47] | Nakashima M, Iohara K, Sugiyama M. Human dental pulp stem cells with highly angiogenic and neurogenic potential for possible use in pulp regeneration[J]. Cytokine Growth Factor Rev, 2009, 20(5/6): 435-440. |
[48] | Katata C, Sasaki JI, Li A, et al. Fabrication of vascularized DPSC constructs for efficient pulp regeneration[J]. J Dent Res, 2021, 100(12): 1351-1358. |
[49] | Driesen RB, Gervois P, Vangansewinkel T, et al. Unraveling the role of the apical papilla during dental root maturation[J]. Front Cell Dev Biol, 2021, 9: 665600. |
[50] | Liu Q, Gao Y, He JZ. Stem cells from the apical papilla (SCAPs): past, present, prospects, and challenges[J]. Biomedicines, 2023, 11(7): 2047. |
[51] | Ferrúa CP, Centeno EGZ, Rosa LCD, et al. How has dental pulp stem cells isolation been conducted? A scoping review[J]. Braz Oral Res, 2017, 31: e87. |
[52] | Liu P, Zhang YX, Ma YJ, et al. Application of dental pulp stem cells in oral maxillofacial tissue engineering[J]. Int J Med Sci, 2022, 19(2): 310-320. |
[53] | Iohara K, Nakashima M, Ito M, et al. Dentin rege-neration by dental pulp stem cell therapy with recombinant human bone morphogenetic protein 2[J]. J Dent Res, 2004, 83(8): 590-595. |
[54] | Yang XC, Walboomers XF, van den Beucken JJJP, et al. Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo [J]. Tissue Eng Part A, 2009, 15(2): 367-375. |
[55] | Hu L, Liu Y, Wang S. Stem cell-based tooth and periodontal regeneration[J]. Oral Dis, 2018, 24(5): 696-705. |
[56] | Jang JH, Shin HW, Lee JM, et al. An overview of pathogen recognition receptors for innate immunity in dental pulp[J]. Mediators Inflamm, 2015, 2015: 794143. |
[57] | Presta M, Dell’Era P, Mitola S, et al. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis[J]. Cytokine Growth Factor Rev, 2005, 16(2): 159-178. |
[58] | Morotomi T, Washio A, Kitamura C. Current and future options for dental pulp therapy[J]. Jpn Dent Sci Rev, 2019, 55(1): 5-11. |
[59] | Zhang XX, Li H, Sun JJ, et al. Cell-derived micro-environment helps dental pulp stem cells promote dental pulp regeneration[J]. Cell Prolif, 2017, 50(5): e12361. |
[60] | El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: progress and challenges[J]. Glob Cardiol Sci Pract, 2013, 2013(3): 316-342. |
[61] | Kniebs C, Kreimendahl F, Köpf M, et al. Influence of different cell types and sources on pre-vascularisation in fibrin and agarose-collagen gels[J]. Organo-genesis, 2020, 16(1): 14-26. |
[62] | Masson-Meyers DS, Tabatabaei F, Steinhaus L, et al. Development of fibroblast/endothelial cell-see-ded collagen scaffolds for in vitro prevascularization[J]. J Biomed Mater Res B Appl Biomater, 2023, 111(3): 633-645. |
[63] | Putra RU, Basri H, Prakoso AT, et al. Level of acti-vity changes increases the fatigue life of the porous magnesium scaffold, as observed in dynamic immersion tests, over time[J]. Sustainability, 2023, 15(1): 823. |
[64] | Kafili G, Niknejad H, Tamjid E, et al. Amnion-derived hydrogels as a versatile platform for regenerative therapy: from lab to market[J]. Front Bioeng Biotechnol, 2024, 12: 1358977. |
[65] | Jang JH, Moon JH, Kim SG, et al. Pulp regeneration with hemostatic matrices as a scaffold in an immature tooth minipig model[J]. Sci Rep, 2020, 10(1): 12536. |
[66] |
Srivastava S. Current and future perspectives for dentin-pulp tissue engineering-an update[J]. South African Dent J, 2019, 74(3). doi:10.17159/2519-0105/2019/V74NO3A1 .
doi: 10.17159/2519-0105/2019/V74NO3A1 |
[67] | Liu H, Lu J, Jiang QZ, et al. Biomaterial scaffolds for clinical procedures in endodontic regeneration[J]. Bioact Mater, 2021, 12: 257-277. |
[68] | Suamte L, Tirkey A, Babu PJ. Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications[J]. Smart Mater Med, 2023, 4: 243-256. |
[69] | Tran TT, Hamid ZA, Cheong KY. A review of mechanical properties of scaffold in tissue engineering: aloe vera composites[J]. J Phys: Conf Ser, 2018, 1082: 012080. |
[70] | Raddall G, Mello I, Leung BM. Biomaterials and scaffold design strategies for regenerative endodontic therapy[J]. Front Bioeng Biotechnol, 2019, 7: 317. |
[71] | Nowicka A, Miller-Burchacka M, Lichota D, et al. Tissue engineering application in regenerative endo-dontics[J]. Pomeranian J Life Sci, 2021, 67: 10-17. |
[72] | Reddy MB, Ponnamma D, Choudhary R, et al. A comparative review of natural and synthetic biopolymer composite scaffolds[J]. Polymers, 2021, 13(7): 1105. |
[73] | Sharma D, Ross D, Wang GF, et al. Upgrading prevascularization in tissue engineering: a review of strategies for promoting highly organized microvascular network formation[J]. Acta Biomater, 2019, 95: 112-130. |
[74] | de Santis MM, Alsafadi HN, Tas S, et al. Extracellular-matrix-reinforced bioinks for 3D bioprinting human tissue[J]. Adv Mater, 2021, 33(3): e2005476. |
[75] | Mohd N, Razali M, Ghazali MJ, et al. Current advances of three-dimensional bioprinting application in dentistry: a scoping review[J]. Materials (Basel), 2022, 15(18): 6398. |
[76] | Tavelli L, McGuire MK, Zucchelli G, et al. Extracellular matrix-based scaffolding technologies for perio-dontal and peri-implant soft tissue regeneration[J]. J Periodontol, 2020, 91(1): 17-25. |
[77] | Yu HY, Zhang XY, Song WJ, et al. Effects of 3-dimensional bioprinting alginate/gelatin hydrogel scaffold extract on proliferation and differentiation of human dental pulp stem cells[J]. J Endod, 2019, 45(6): 706-715. |
[78] | Billiet T, Vandenhaute M, Schelfhout J, et al. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering[J]. Biomaterials, 2012, 33(26): 6020-6041. |
[79] | Rao DA, Pober JS. Endothelial injury, alarmins, and allograft rejection[J]. Crit Rev Immunol, 2008, 28(3): 229-248. |
[80] | Mohd N, Razali M, Fauzi MB, et al. In vitro and in vivo biological assessments of 3D-bioprinted scaffolds for dental applications[J]. Int J Mol Sci, 2023, 24(16): 12881. |
[81] | Ahmed GM, Abouauf EA, AbuBakr N, et al. Tissue engineering approaches for enamel, dentin, and pulp regeneration: an update[J]. Stem Cells Int, 2020, 2020: 5734539. |
[82] | Noguera-Troise I, Daly C, Papadopoulos NJ, et al. Blockade of Dll4 inhibits tumour growth by promo-ting non-productive angiogenesis[J]. Nature, 2006, 444(7122): 1032-1037. |
[83] | Lin RZ, Lee CN, Moreno-Luna R, et al. Host non-inflammatory neutrophils mediate the engraftment of bioengineered vascular networks[J]. Nat Biomed Eng, 2017, 1: 0081. |
[84] | 覃思文, 廖立. 牙髓再生中血管网络重建策略[J]. 国际口腔医学杂志, 2022, 49(3): 272-282. |
Qin SW, Liao L. Strategies of vascularization in dental pulp regeneration[J]. Int J Stomatol, 2022, 49(3): 272-282. | |
[85] | Whitaker R, Hernaez-Estrada B, Hernandez RM, et al. Immunomodulatory biomaterials for tissue repair[J]. Chem Rev, 2021, 121(18): 11305-11335. |
[86] | Qian Y, Gong JX, Lu KJ, et al. DLP printed hDPSC-loaded GelMA microsphere regenerates dental pulp and repairs spinal cord[J]. Biomaterials, 2023, 299: 122137. |
[87] | Zhao FX, Zhang ZJ, Guo WH. The 3-dimensional printing for dental tissue regeneration: the state of the art and future challenges[J]. Front Bioeng Biotechnol, 2024, 12: 1356580. |
[88] | Han XY, Saiding Q, Cai XL, et al. Intelligent vascularized 3D/4D/5D/6D-printed tissue scaffolds[J]. Nanomicro Lett, 2023, 15(1): 239. |
[1] | 温星悦, 赵骏宇, 赵崇钧, 王贵欣, 黄睿洁. 壳聚糖治疗牙周病的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 416-424. |
[2] | 和子慕, 李风兰. 数字化口腔定位支架在头颈部肿瘤放射治疗中的应用现状[J]. 国际口腔医学杂志, 2024, 51(1): 28-35. |
[3] | 蔡超莹,陈学鹏,胡济安. 外泌体复合支架用于口腔组织工程的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 489-496. |
[4] | 梁屹,裴锡波,万乾炳. 光响应水凝胶在生物医学领域应用的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 12-18. |
[5] | 周易,赵玉鸣. 牙髓再生支架材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 19-26. |
[6] | 巩靖蕾,黄艳梅,王军. 多相支架在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 563-569. |
[7] | 曹春玲,韩冰,王晓燕. 水凝胶用于牙髓再生的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 192-197. |
[8] | 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679. |
[9] | 李龙飚,汪成林,叶玲. 天然支架材料在牙髓组织工程再生中的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 666-672. |
[10] | 易芳,王斯任,褚衍昊,卢燕勤. 骨组织工程支架材料修复牙槽嵴裂的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 603-610. |
[11] | 张艺馨, 李磊. 磷酸钙支架-药物缓释体系在骨组织工程中的研究进展[J]. 国际口腔医学杂志, 2018, 45(3): 346-350. |
[12] | 罗惟丹, 李明云, 周学东, 程磊. 纳米羟磷灰石在牙体修复和牙髓治疗领域的应用[J]. 国际口腔医学杂志, 2018, 45(2): 192-198. |
[13] | 李燕玲, 王劲茗. 计算机辅助设计与制作钛支架在无牙颌患者种植固定修复中的应用现状[J]. 国际口腔医学杂志, 2017, 44(3): 344-349. |
[14] | 杨懋彬1 曾倩2. 再生牙髓病学——牙髓再生的新方向[J]. 国际口腔医学杂志, 2016, 43(5): 495-499. |
[15] | 李州,许庆安,. 干细胞和支架与牙髓再生及其血运重建[J]. 国际口腔医学杂志, 2016, 43(3): 298-302. |
|