国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (2): 190-194.doi: 10.7518/gjkq.2016.02.017
徐基亮,夏荣
Xu Jiliang, Xia Rong
摘要: 钛及其合金因良好的生物学性能被广泛应用于口腔医学领域,但钛金属是惰性材料,植入后不能直接和骨形成较好的结合,因此对钛及其合金表面进行生物改性一直是生物材料领域的研究热点。精氨酸-甘氨酸-天冬氨酸(RGD)作为钛材料表面修饰的候选蛋白质,广泛存在于纤连蛋白、玻连蛋白和骨涎腺蛋白等多种细胞外基质蛋白中,可调节细胞与血清及细胞外基质的附着,因此,本文就目前国内外对RGD修饰钛及其合金表面的主要研究进展作一综述。
中图分类号:
[1] Saju KK, Jayadas NH, Vidyanand S, et al. Investigations into the molecular-level adhesion characteristics of hydroxyapatite-coated and anodized titanium surfaces using the molecular orbital approach[J]. Proc Inst Mech Eng H, 2011, 225(3):246-254. [2] Pegueroles M, Aguirre A, Engel E, et al. Effect of blasting treatment and Fn coating on MG63 adhesion and differentiation on titanium: a gene expression study using real-time RT-PCR[J]. J Mater Sci Mater Med, 2011, 22(3):617-627. [3] Ryu JJ, Park K, Kim HS, et al. Effects of anodized titanium with Arg-Gly-Asp(RGD) peptide immobilized via chemical grafting or physical adsorption on bone cell adhesion and differentiation[J]. Int J Oral Maxillofac Implants, 2013, 28(4):963-972. [4] Park JW, Kurashima K, Tustusmi Y, et al. Bone healing of commercial oral implants with RGD immobilization through electrodeposited poly(ethylene glycol) in rabbit cancellous bone[J]. Acta Biomater, 2011, 7(8):3222-3229. [5] Hwang DS, Waite JH, Tirrell M. Promotion of osteoblast osteoblast proliferation on complex coacervation-based hyaluronic acid-recombinant mussel adhesive protein coatings on titanium[J]. Biomaterials, 2010, 31(6):1080-1084. [6] Chen M, Wu C, Song D, et al. Effect of grooves on adsorption of RGD tripeptide onto rutile TiO(2) [7] Maddikeri RR, Tosatti S, Schuler M, et al. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces[J]. J Biomed Mater Res A, 2008, 84(2):425-435. [8] Zorn G, Gotman I, Gutmanas EY, et al. Surface modification of Ti45Nb alloy by immobilization of RGD peptide via self assembled monolayer[J]. J Mater Sci Mater Med, 2007, 18(7):1309-1315. [9] Germanier Y, Tosatti S, Broggini N, et al. Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs[J]. Clin Oral Implants Res, 2006, 17(3):251-257. [10] Tosatti S, Schwartz Z, Campbell C, et al. RGDcontaining peptide GCRGYGRGDSPG reduces enhancement of osteoblast differentiation by poly(Llysine)-graft-poly(ethylene glycol)-coated titanium surfaces[J]. J Biomed Mater Res A, 2004, 68(3):458-472. [11] Oya K, Tanaka Y, Saito H, et al. Calcification by MC3T3-E1 cells on RGD peptide immobilized on titanium through electrodeposited PEG[J]. Biomaterials, 2009, 30(7):1281-1286. [12] Tanaka Y, Doi H, Kobayashi E, et al. Determination of the immobilization manner of amine-terminated poly(ethylene glycol) electrodeposited on a titanium surface with XPS and GD-OES[J]. Mater Trans, 2007, 48(3):287-292. [13] Tanaka Y, Saito H, Tsutsumi Y, et al. Effect of pH on the interaction between zwitterions and titanium oxide[J]. J Colloid Interface Sci, 2009, 330(1):138-143. [14] Tanaka Y, Matsuo Y, Komiya T, et al. Characterization of the spatial immobilization manner of poly (ethylene glycol) to a titanium surface with immersion and electrodeposition and its effects on platelet adhesion[J]. J Biomed Mater Res A, 2010, 92(1):350-358. [15] Porté-Durrieu MC, Guillemot F, Pallu S, et al. Cyclo-(DfKRG) peptide grafting onto Ti-6Al-4V: physical characterization and interest towards human osteoprogenitor cells adhesion[J]. Biomaterials, 2004, 25(19):4837-4846. [16] Paredes V, Salvagni E, Rodríguez-Castellon E, et al. Study on the use of 3-aminopropyltriethoxysilane and 3-chloropropyltriethoxysilane to surface biochemical modification of a novel low elastic modulus Ti-Nb-Hf alloy[J]. J Biomed Mater Res Part B Appl Biomater, 2015, 103(3):495-502. [17] de Giglio E, Sabbatini L, Colucci S, et al. Synthesis, analytical characterization, and osteoblast adhesion properties on RGD-grafted polypyrrole coatings on titanium substrates[J]. J Biomater Sci Polym Ed, 2000, 11(10):1073-1083. [18] 战德松, 赵宝红, 田维明, 等. RGD修饰纯钛表面对人牙龈成纤维细胞生物学行为的影响[J]. 材料研究学报, 2005, 19(3):320-324. Zhan DS, Zhao BH, Tian WM, et al. Effects of RGD-grafted titanium on the adhesion of human gingival fibroblasts[J]. Chin J Mat Res, 2005, 19(3):320-324. [19] 赵宝红, 战德松, 田维明, 等. RGD修饰钛表面对人牙龈成纤维细胞初期黏附和铺展的影响[J]. 材料研究学报, 2005, 19(4):369-374. Zhao BH, Zhan DS, Tian WM, et al. Influence of RGD-grafted titanium on the adhesion and spreading of human gingival fibroblasts[J]. Chin J Mat Res, 2005, 19(4):369-374. [20] 赵宝红, 封伟, 王丹宁, 等. RGD肽修饰纯钛表面对人牙龈成纤维细胞和上皮细胞黏附影响研究[J].中国实用口腔科杂志, 2012, 5(1):31-33. Zhao BH, Feng W, Wang DN, et al. Effects of RGDgrafted titanium on the adhesion of human gingival fibroblasts and epithelial cells[J]. Chin J Pract Stomatol, 2012, 5(1):31-33. [21] 徐基亮, 夏荣, 孙磊, 等. 纯钛表面加载RGD多肽的体外实验研究[J]. 安徽医科大学学报, 2014, 49(11):1591-1595. Xu JL, Xia R, Sun L, et al. Study of pure titanium surface loaded with RGD peptide in vitro[J]. Acta Univ Med Anhui, 2014, 49(11):1591-1595. [22] 张迪, 刘长虹, 章锦才, 等. RGD肽修饰壳聚糖作为种植体表面基因载体的研究[J]. 华西口腔医学杂志, 2014, 32(4):336-340. Zhang D, Liu CH, Zhang JC, et al. RGD peptidemodified chitosan as a gene carrier of implant surface[ J]. West China J Stomatol, 2014, 32(4):336-340. [23] 徐倩, 冯青, 欧俊, 等. 层层静电自组装构建载药种植体的研究[J]. 华西口腔医学杂志, 2014, 32(6):537-541. Xu Q, Feng Q, Ou J, et al. Construction of drugloaded titanium implants via layer-by-layer electrostatic self-assembly[J]. West China J Stomatol, 2014, 32(6):537-541. [24] 李贵才. Ti表面共固定肝素和纤连蛋白分子:复合生物功能化的实现[D]. 西安: 西南交通大学, 2012. Li GC. Ti surface fixed heparin and fibronectin molecules: the realization of the complex biological functionalization[D]. Xi’an: Southwest Jiaotong Univ, 2012. [25] 董丽. 钛表面接枝RGD及装载BMP的仿细胞外间质聚多糖自组装膜制备与表征[D]. 西安: 西南交通大学, 2014. Dong L. Titanium surface graft RGD and loading BMP imitation cell outer poly polysaccharide preparation and characterization of self-assembled film [D]. Xi’an: Southwest Jiaotong Univ, 2014. [26] Lim JY, Shaughnessy MC, Zhou Z, et al. Surface energy effects on osteoblast spatial growth and mineralization[J]. Biomaterials, 2008, 29(12):1776-1784. [27] Voger EA, Bussian RW. Short-term cell-attachment rates: a surface-sensitive test of cell-substrate compatibility[J]. J Biomed Mater Res, 1987, 21(10):1197-1211. [28] K?mmerer PW, Gabriel M, Al-Nawas B, et al. Early implant healing: promotion of platelet activation and cytokine release by topographical, chemical and biomimetical titanium surface modifications in vitro [J]. Clin Oral Implants Res, 2012, 23(4):504-510. (本文采编 王晴) |
[1] | 赵雅丽,王植,高阳,辛鹏飞,张宽收,刘青梅. 磷酸钛氧钾激光在牙齿漂白治疗中的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 195-202. |
[2] | 张麒麟,李军,李姝慧. 根管预备机用镍钛锉的研究进展[J]. 国际口腔医学杂志, 2022, 49(6): 663-669. |
[3] | 戢晓,景钫淇,李雅,薛晶. 根管预备顺序的数据模拟优化研究[J]. 国际口腔医学杂志, 2022, 49(1): 37-47. |
[4] | 王宏媛,何露,张茹,郑德强,李红. 热处理连续旋转镍钛锉对重度弯曲根管成形能力的比较研究[J]. 国际口腔医学杂志, 2021, 48(3): 297-304. |
[5] | 朱俊瑾,王剑. 钛种植体表面银纳米颗粒负载方法的进展[J]. 国际口腔医学杂志, 2021, 48(3): 334-340. |
[6] | 刘春煦,鲁雨晴,贾璐铭,董博,张倩倩,于海洋. 选择性激光熔融与铸造钛合金卡环的模拟摘戴固位力研究[J]. 国际口腔医学杂志, 2020, 47(2): 152-158. |
[7] | 高洁,马锐,葛振林. 热激活镍钛弓丝矫治效率的系统评价[J]. 国际口腔医学杂志, 2019, 46(4): 393-399. |
[8] | 姜雪,黄淡远,廖文. 磷酸钛氧钾激光应用于口腔疾病治疗的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 456-462. |
[9] | 于婉琦,周延民,赵静辉. 口腔种植体新材料的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 488-496. |
[10] | 刘育豪,袁泉,张士文. 基于共价接枝的钛种植体载药抗菌涂层的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 228-233. |
[11] | 祁星颖,郑国莹,隋磊. 钛种植体表面形貌对成骨的影响[J]. 国际口腔医学杂志, 2018, 45(5): 527-533. |
[12] | 孙晓阳, 李霞. 镍钛再治疗器械去除根管充填材料的研究进展[J]. 国际口腔医学杂志, 2017, 44(3): 284-287. |
[13] | 李宗莉, 彭彬. HyFlex、S3、K3XF以及ProTaper在树脂模拟根管中成形能力的比较研究[J]. 国际口腔医学杂志, 2017, 44(3): 256-260. |
[14] | 李燕玲, 王劲茗. 计算机辅助设计与制作钛支架在无牙颌患者种植固定修复中的应用现状[J]. 国际口腔医学杂志, 2017, 44(3): 344-349. |
[15] | 杨殷杰, 侯本祥, 侯晓玫. R-相热处理镍钛根管锉的力学性能和根管预备成形能力[J]. 国际口腔医学杂志, 2017, 44(2): 189-194. |
|