Int J Stomatol ›› 2022, Vol. 49 ›› Issue (3): 263-271.doi: 10.7518/gjkq.2022029

• Stem Cells and Regenerative Medicine • Previous Articles     Next Articles

Advances in research on noncoding RNA during the osteogenic differentiation of dental follicle stem cells

Hong Yaya1(),Chen Xuepeng1,Si Misi2()   

  1. 1.Dept. of Orthodontics, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
    2.Dept. of Implantology, The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou 310006, China
  • Received:2021-09-29 Revised:2021-12-09 Online:2022-05-01 Published:2022-05-09
  • Contact: Misi Si E-mail:yaya_zju@163.com;misi_si@zju.edu.cn
  • Supported by:
    Natural Science Foundation of Zhejiang Province(LY18H140001)

Abstract:

Alveolar bone-defect regeneration has long been a challenge in the field of dentistry. The rising technology of periodontal tissue engineering provides a new strategy to solve it, and ideal seed cells are key elements of this technology. Dental follicle stem cells (DFSCs), as promising seed cells, have the potential of osteogenic differentiation, which are also easily accessible for cell culture and preservation. The osteogenic differentiation of DFSCs involves complex gene regulation. Noncoding RNA (ncRNA), as a functional RNA that is transcribed from DNA but does not encode protein, can reportedly regulate the osteogenic differentiation of stem cells at the epigenetic, transcription, and post-transcription le-vels. Exploring the role and mechanism of ncRNA in the regulatory network of DFSCs’ osteogenic differentiation can provide novel therapeutic strategies for tissue regeneration. This review summarizes the advances in research on ncRNA during the osteogenic differentiation of DFSCs, including microRNA, long noncoding RNA, and circular RNA.

Key words: dental follicle stem cell, noncoding RNA, micro RNA, long noncoding RNA, circular RNA, osteogenic differentiation

CLC Number: 

  • Q 254

TrendMD: 

Tab 1

ncRNAs involved in the regulation on osteogenic differentiation of DFSCs"

名称类型细胞调控水平表达水平调控作用可能的作用机制文献
miR-101miRNAhDFC转录后上调促进靶向BMP2/DLX3[51]
miR-29miRNAhDFC转录后下调抑制靶向COL1[52]
miR-146amiRNAhDFSC转录后下调抑制靶向EGFR[53]
miR-335miRNArDFSC转录后下调抑制[54]
miR-214miRNArDFSC转录后下调抑制[55]
miR-204miRNAhDFC转录后下调抑制靶向RUNX2、ALP、SPARC[56]
MEG3lncRNAhDFSC表观遗传下调抑制靶向Wnt信号通路[57]
HOTAIRM1lncRNAhDFSC表观遗传上调促进靶向DNMT1维持HOXA2的低甲基化水平[58]
circFgfr2circRNArDFC转录后上调促进充当miR-133的分子“海绵”,抑制miR-133表达,增强下游BMP6基因表达[59]
1 Liu J, Ruan JP, Weir MD, et al. Periodontal bone-li-gament-cementum regeneration via scaffolds and stem cells[J]. Cells, 2019, 8(6): 537.
2 Xu XY, Li X, Wang J, et al. Concise review: perio-dontal tissue regeneration using stem cells: strategies and translational considerations[J]. Stem Cells Transl Med, 2019, 8(4): 392-403.
3 Zhang J, Ding H, Liu XF, et al. Dental follicle stem cells: tissue engineering and immunomodulation[J]. Stem Cells Dev, 2019, 28(15): 986-994.
4 Zhou T, Pan JH, Wu PY, et al. Dental follicle cells: roles in development and beyond[J]. Stem Cells Int, 2019, 2019: 9159605.
5 Tamaki Y, Nakahara T, Ishikawa H, et al. In vitro analysis of mesenchymal stem cells derived from human teeth and bone marrow[J]. Odontology, 2013, 101(2): 121-132.
6 Yildirim S, Zibandeh N, Genc D, et al. The comparison of the immunologic properties of stem cells isolated from human exfoliated deciduous teeth, dental pulp, and dental follicles[J]. Stem Cells Int, 2016, 2016: 4682875.
7 Hombach S, Kretz M. Non-coding RNAs: classification, biology and functioning[J]. Adv Exp Med Biol, 2016, 937: 3-17.
8 Sun Y, Yu QC, Li L, et al. Single-cell RNA profiling links ncRNAs to spatiotemporal gene expression during C. elegans embryogenesis[J]. Sci Rep, 2020, 10(1): 18863.
9 Subhramanyam CS, Hu QD. Non-coding RNA in brain development and disorder[J]. Curr Med Chem, 2017, 24(18): 1983-1997.
10 Leimena C, Qiu HY. Non-coding RNA in the pathogenesis, progression and treatment of hypertension[J]. Int J Mol Sci, 2018, 19(4): E927.
11 Esteller M. Non-coding RNAs in human disease[J]. Nat Rev Genet, 2011, 12(12): 861-874.
12 Kim SS, Lee SV. Non-coding RNAs in Caenorhabditis elegans aging[J]. Mol Cells, 2019, 42(5): 379-385.
13 Fico A, Fiorenzano A, Pascale E, et al. Long non-coding RNA in stem cell pluripotency and lineage commitment: functions and evolutionary conservation[J]. Cell Mol Life Sci, 2019, 76(8): 1459-1471.
14 Yi R, Fuchs E. microRNAs and their roles in mammalian stem cells[J]. J Cell Sci, 2011, 124(Pt 11): 1775-1783.
15 Chew CL, Conos SA, Unal B, et al. Noncoding RNAs: master regulators of inflammatory signaling[J]. Trends Mol Med, 2018, 24(1): 66-84.
16 Cáceres-Durán MÁ, Ribeiro-Dos-Santos Â, Vidal AF. Roles and mechanisms of the long noncoding RNAs in cervical cancer[J]. Int J Mol Sci, 2020, 21(24): E9742.
17 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843-854.
18 Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans[J]. Nature, 2000, 403(6772): 901-906.
19 Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay[J]. Nat Rev Genet, 2010, 11(9): 597-610.
20 Liang HW, Gong F, Zhang SY, et al. The origin, function, and diagnostic potential of extracellular microRNAs in human body fluids[J]. Wiley Interdiscip Rev RNA, 2014, 5(2): 285-300.
21 Rojas-Feria M, Romero-García T, Fernández Caballero-Rico JÁ, et al. Modulation of faecal metagenome in Crohn’s disease: role of microRNAs as biomarkers[J]. World J Gastroenterol, 2018, 24(46): 5223-5233.
22 Wang YM, Medvid R, Melton C, et al. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal[J]. Nat Genet, 2007, 39(3): 380-385.
23 Peng SP, Cao LH, He SW, et al. An overview of long noncoding RNAs involved in bone regeneration from mesenchymal stem cells[J]. Stem Cells Int, 2018, 2018: 8273648.
24 Xu JY, Bai J, Zhang XX, et al. A comprehensive overview of lncRNA annotation resources[J]. Brief Bioinform, 2017, 18(2): 236-249.
25 Sun H, Peng GX, Ning X, et al. Emerging roles of long noncoding RNA in chondrogenesis, osteogenesis, and osteoarthritis[J]. Am J Transl Res, 2019, 11(1): 16-30.
26 Chen LL. Linking long noncoding RNA localization and function[J]. Trends Biochem Sci, 2016, 41(9): 761-772.
27 Ju C, Liu RF, Zhang YW, et al. Mesenchymal stem cell-associated lncRNA in osteogenic differentiation[J]. Biomed Pharmacother, 2019, 115: 108912.
28 Yang QL, Jia LF, Li XB, et al. Long noncoding RNAs: new players in the osteogenic differentiation of bone marrow-and adipose-derived mesenchymal stem cells[J]. Stem Cell Rev Rep, 2018, 14(3): 297-308.
29 Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2): 96-118.
30 Sanger HL, Klotz G, Riesner D, et al. Viroids are single-stranded covalently closed circular RNA mo-lecules existing as highly base-paired rod-like structures[J]. Proc Natl Acad Sci USA, 1976, 73(11): 3852-3856.
31 Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013, 19(2): 141-157.
32 Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Mol Cell, 2015, 58(5): 870-885.
33 Yu CY, Kuo HC. The emerging roles and functions of circular RNAs and their generation[J]. J Biomed Sci, 2019, 26(1): 29.
34 Huang XQ, Cen X, Zhang B, et al. The roles of circRFWD2 and circINO80 during NELL-1-induced osteogenesis[J]. J Cell Mol Med, 2019, 23(12): 8432-8441.
35 Li JQ, Yang J, Zhou P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015, 5(2): 472-480.
36 Morsczeck C, Götz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth[J]. Matrix Biol, 2005, 24(2): 155-165.
37 Chen XP, Li SY, Zeng ZB, et al. Notch1 signalling inhibits apoptosis of human dental follicle stem cells via both the cytoplasmic mitochondrial pathway and nuclear transcription regulation[J]. Int J Biochem Cell Biol, 2017, 82: 18-27.
38 Lima RL, Holanda-Afonso RC, Moura-Neto V, et al. Human dental follicle cells express embryonic, mesenchymal and neural stem cells markers[J]. Arch Oral Biol, 2017, 73: 121-128.
39 Sowmya S, Chennazhi KP, Arzate H, et al. Periodontal specific differentiation of dental follicle stem cells into osteoblast, fibroblast, and cementoblast[J]. Tissue Eng Part C Methods, 2015, 21(10): 1044-1058.
40 Rezai-Rad M, Bova JF, Orooji M, et al. Evaluation of bone regeneration potential of dental follicle stem cells for treatment of craniofacial defects[J]. Cytotherapy, 2015, 17(11): 1572-1581.
41 Nie L, Yang X, Duan L, et al. The healing of alveolar bone defects with novel bio-implants composed of Ad-BMP9-transfected rDFCs and CHA scaffolds[J]. Sci Rep, 2017, 7(1): 6373.
42 Guo SJ, Kang J, Ji BH, et al. Periodontal-derived mesenchymal cell sheets promote periodontal rege-neration in inflammatory microenvironment[J]. Tissue Eng Part A, 2017, 23(13/14): 585-596.
43 Luan XH, Ito Y, Dangaria S, et al. Dental follicle progenitor cell heterogeneity in the developing mouse periodontium[J]. Stem Cells Dev, 2006, 15(4): 595-608.
44 Bok JS, Byun SH, Park BW, et al. The role of human umbilical vein endothelial cells in osteogenic differentiation of dental follicle-derived stem cells in in vitro co-cultures[J]. Int J Med Sci, 2018, 15(11): 1160-1170.
45 Guo YW, Guo WH, Chen J, et al. Are Hertwig’s e-pithelial root sheath cells necessary for periodontal formation by dental follicle cells[J]. Arch Oral Biol, 2018, 94: 1-9.
46 Li CH, Yang X, He YJ, et al. Bone morphogenetic protein-9 induces osteogenic differentiation of rat dental follicle stem cells in P38 and ERK1/2 MAPK dependent manner[J]. Int J Med Sci, 2012, 9(10): 862-871.
47 Yao SM, He HZ, Gutierrez DL, et al. Expression of bone morphogenetic protein-6 in dental follicle stem cells and its effect on osteogenic differentiation[J]. Cells Tissues Organs, 2013, 198(6): 438-447.
48 Yao SM, Li CH, Beckley M, et al. Expression of odontogenic ameloblast-associated protein in the dental follicle and its role in osteogenic differentiation of dental follicle stem cells[J]. Arch Oral Biol, 2017, 78: 6-12.
49 Rezai Rad M, Liu DW, He HZ, et al. The role of dentin matrix protein 1 (DMP1) in regulation of osteogenic differentiation of rat dental follicle stem cells (DFSCs)[J]. Arch Oral Biol, 2015, 60(4): 546-556.
50 Chen CC, Zhang JY, Ling JQ, et al. Nkd2 promotes the differentiation of dental follicle stem/progenitor cells into osteoblasts[J]. Int J Mol Med, 2018, 42(5): 2403-2414.
51 Klingelhöffer C, Codrin C, Ettl T, et al. miRNA-101 supports the osteogenic differentiation in human dental follicle cells[J]. Arch Oral Biol, 2016, 72: 47-50.
52 Tomoki R, Ogura N, Takahashi K, et al. microRNA-29 family suppresses mineralization in dental follicle cells[J]. J Hard Tissue Biol, 2015, 24(1): 23-28.
53 Chen P, Wei DX, Xie BY, et al. Effect and possible mechanism of network between microRNAs and RUNX2 gene on human dental follicle cells[J]. J Cell Biochem, 2014, 115(2): 340-348.
54 左婕, 王智亨, 盛丽, 等. miR-335对牙囊干细胞成骨分化能力的影响[J]. 口腔医学, 2018, 38(12): 1074-1078.
Zuo J, Wang ZH, Sheng L, et al. The effects of miR-335 on the osteogenic differentiation potential of the DFSCs[J]. Stomatology, 2018, 38(12): 1074-1078.
55 王智亨, 左婕, 王梦琪, 等. miR-214抑制牙囊细胞成骨分化的体外研究[J]. 口腔疾病防治, 2020, 28(3): 146-152.
Wang ZH, Zuo J, Wang MQ, et al. miR-214 inhibits the osteogenic differentiation of dental follicle cells in vitro[J]. J Prev Treat Stomatol Dis, 2020, 28(3): 146-152.
56 Ito K, Tomoki R, Ogura N, et al. microRNA-204 regulates osteogenic induction in dental follicle cells[J]. J Dent Sci, 2020, 15(4): 457-465.
57 Deng LD, Hong H, Zhang XQ, et al. Down-regula-ted lncRNA MEG3 promotes osteogenic differentiation of human dental follicle stem cells by epigenetically regulating Wnt pathway[J]. Biochem Biophys Res Commun, 2018, 503(3): 2061-2067.
58 Chen ZY, Zheng JX, Hong H, et al. lncRNA HOTAIRM1 promotes osteogenesis of hDFSCs by epigenetically regulating HOXA2 via DNMT1 in vitro[J]. J Cell Physiol, 2020, 235(11): 8507-8519.
59 Du Y, Li J, Hou YL, et al. Alteration of circular RNA expression in rat dental follicle cells during osteogenic differentiation[J]. J Cell Biochem, 2019, 120(8): 13289-13301.
60 Ogura N, Takahashi K, Iwai S, et al. Comparative analysis of microRNA-mRNA expression profiles of mesenchymal stem cells and dental follicle cells[J]. Int J Oral Med Sci, 2012, 11(1): 13-21.
61 Luzi E, Marini F, Sala SC, et al. Osteogenic diffe-rentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor[J]. J Bone Miner Res, 2008, 23(2): 287-295.
62 Mizuno Y, Yagi K, Tokuzawa Y, et al. miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation[J]. Biochem Biophys Res Commun, 2008, 368(2): 267-272.
63 Zhang JF, Fu WM, He ML, et al. MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling[J]. RNA Biol, 2011, 8(5): 829-838.
64 Su X, Liao L, Shuai Y, et al. miR-26a functions oppositely in osteogenic differentiation of BMSCs and ADSCs depending on distinct activation and roles of Wnt and BMP signaling pathway[J]. Cell Death Dis, 2015, 6: e1851.
65 Croft L, Szklarczyk D, Jensen LJ, et al. Multiple independent analyses reveal only transcription factors as an enriched functional class associated with microRNAs[J]. BMC Syst Biol, 2012, 6: 90.
66 Zhu J, Shimizu E, Zhang XR, et al. EGFR signaling suppresses osteoblast differentiation and inhibits expression of master osteoblastic transcription factors Runx2 and Osterix[J]. J Cell Biochem, 2011, 112(7): 1749-1760.
67 Tomé M, López-Romero P, Albo C, et al. miR-335 orchestrates cell proliferation, migration and diffe-rentiation in human mesenchymal stem cells[J]. Cell Death Differ, 2011, 18(6): 985-995.
[1] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[2] Guo Yuting,Lü Xuechao. Research progress on drugs regulating the osteogenic differentiation of dental pulp stem cells [J]. Int J Stomatol, 2021, 48(6): 737-744.
[3] Liu Juan,Chen Bin,Yan Fuhua. Effects of platelet-rich plasma and concentrated growth factor on the proliferation and osteogenic differentiation of human periodontal cells [J]. Int J Stomatol, 2021, 48(5): 520-527.
[4] Li Jingya,Shui Yusen,Guo Yongwen. Advances in mechanisms for osteogenic differentiation of human periodontal ligament cells induced by cyclic tensile stress [J]. Int J Stomatol, 2020, 47(6): 652-660.
[5] Yang Yeqing,Chen Ming,Wu Buling. Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 257-262.
[6] Liu Junqi,Chen Yiyin,Yang Wenbin. Research progress on N6-methyladenosine for regulating the osteogenic differentiation of bone marrow mesenchymal stem cells [J]. Int J Stomatol, 2020, 47(3): 263-269.
[7] Wang Runting,Fang Fuchun. Progress in research of non-coding RNAs in osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(2): 138-145.
[8] Yu Xiaohong,Liu Yu,Zeng Lian,Yang Yanling,Wang Zhou,Li Wei. Effects of enamel matrix derivative on proliferation and osteogenic differentiation of human periodontal ligament stem cells [J]. Int J Stomatol, 2020, 47(1): 24-31.
[9] Zhou Tingru,Li Yongsheng. Advances of dental pulp stem cells in osteogenic microenvironment [J]. Int J Stomatol, 2019, 46(6): 675-679.
[10] Wei Hu,Yifan Wang,Yifang Yuan,Ying Li,Bin Guo. Research progress on regulatory mechanism of the circadian clock genes on osteogenesis and bone resorption [J]. Int J Stomatol, 2019, 46(3): 302-307.
[11] Tingting Li,Yufeng Zhang,Ruoxi Wang,Zhiqing Huang,Lü Xie,Yifan Xue,Yulan Wang. Mechanism and application of osteogenesis induced by graphene and its derivatives modified composite materials [J]. Inter J Stomatol, 2018, 45(6): 673-677.
[12] Ge Yihong, Fang Fuchun, Wu Buling. Regulate process of long non-coding RNA in multi-differentiation of mesenchymal stem cells [J]. Inter J Stomatol, 2018, 45(3): 267-271.
[13] Hao Yilin, Fang Fuchun, Wu Buling. Functions of microRNA on the osteogenic differentiation of human periodontal ligament-derived cells [J]. Inter J Stomatol, 2018, 45(1): 46-49.
[14] Wu Caijuan, Yang Lan, Guo Lühua. Role and mechanism of the calcitonin gene related peptide in bone tissue regeneration [J]. Inter J Stomatol, 2017, 44(4): 488-492.
[15] Liu Runheng, Liu Yudong, Chen Zhuofan.. Role and mechanism of microRNA in osteogenic differentiation [J]. Inter J Stomatol, 2017, 44(1): 108-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 2004, 31(02): 126 -128 .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .