Int J Stomatol ›› 2021, Vol. 48 ›› Issue (3): 322-328.doi: 10.7518/gjkq.2021051

• Reviews • Previous Articles     Next Articles

Research progress on biodegradable medical magnesium-based materials

Chen Kenan(),Guo Chuanbin()   

  1. Peking University School of Stomatology, Beijing 100081, China
  • Received:2020-11-12 Revised:2021-01-22 Online:2021-05-01 Published:2021-05-14
  • Contact: Chuanbin Guo E-mail:chenkenan@pku.edu.cn;guodazuo@sina.com

Abstract:

As biodegradable biomaterials, magnesium and its alloys have good biocompatibility and low density, have similar elastic modulus as that of bone, promote osteogenesis and have certain anti-infective ability. Therefore, these materials have broad application prospect in the field of biomedical materials. However, magnesium-based materials have some defects, such as rapid corrosion rate and loss of mechanical integrity because of pitting corrosion and gas generation, which limit their application. Current research has devoted to improve the corrosion and mechanical properties of magnesium alloys through alloying and surface modification. This article provides a brief review on the research progress of magnesium-based materials in the oral and maxillofacial field and other medical fields.

Key words: biodegradable materials, medical magnesium-based metal, medical application

CLC Number: 

  • R782

TrendMD: 
[1] Zheng YF, Gu XN, Witte F. Biodegradable metals[J]. Mater Sci Eng: R: Rep, 2014,77:1-34.
doi: 10.1016/j.mser.2014.01.001
[2] Ali M, Hussein MA, Al-Aqeeli N. Magnesium-based composites and alloys for medical applications: a review of mechanical and corrosion properties[J]. J Alloy Compd, 2019,792:1162-1190.
doi: 10.1016/j.jallcom.2019.04.080
[3] Staiger MP, Pietak AM, Huadmai J, et al. Magnesium and its alloys as orthopedic biomaterials: a review[J]. Biomaterials, 2006,27(9):1728-1734.
pmid: 16246414
[4] Eliaz N, Metoki N. Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications[J]. Materials (Basel), 2017,10(4):E334.
[5] Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty[J]. J Shoulder Elbow Surg, 2003,12(1):35-39.
doi: 10.1067/mse.2003.22
[6] Munir K, Lin JX, Wen CE, et al. Mechanical, corrosion, and biocompatibility properties of Mg-Zr-Sr-Sc alloys for biodegradable implant applications[J]. Acta Biomater, 2020,102:493-507.
doi: 10.1016/j.actbio.2019.12.001
[7] Ali M, Elsherif M, Salih AE, et al. Surface modification and cytotoxicity of Mg-based bio-alloys: an overview of recent advances[J]. J Alloy Compd, 2020,825:154140.
doi: 10.1016/j.jallcom.2020.154140
[8] Saris NE, Mervaala E, Karppanen H, et al. Magnesium. An update on physiological, clinical and analytical aspects[J]. Clin Chim Acta, 2000,294(1/2):1-26.
doi: 10.1016/S0009-8981(99)00258-2
[9] Charyeva O, Dakischew O, Sommer U, et al. Biocompatibility of magnesium implants in primary human reaming debris-derived cells stem cells in vitro[J]. J Orthop Traumatol, 2016,17(1):63-73.
doi: 10.1007/s10195-015-0364-9 pmid: 26153416
[10] Witte F, Fischer J, Nellesen J, et al. In vitro and in vivo corrosion measurements of magnesium alloys[J]. Biomaterials, 2006,27(7):1013-1018.
doi: 10.1016/j.biomaterials.2005.07.037
[11] Dorozhkin SV. Calcium orthophosphates[J]. J Mater Sci, 2007,42(4):1061-1095.
doi: 10.1007/s10853-006-1467-8
[12] Amberg R, Elad A, Beuer F, et al. Effect of physical cues of altered extract media from biodegradable magnesium implants on human gingival fibroblasts[J]. Acta Biomater, 2019,98:186-195.
doi: S1742-7061(19)30502-1 pmid: 31352109
[13] Kiani F, Wen CE, Li YC. Prospects and strategies for magnesium alloys as biodegradable implants from cry-stalline to bulk metallic glasses and composites-a review[J]. Acta Biomater, 2020,103:1-23.
doi: 10.1016/j.actbio.2019.12.023
[14] Pacha-Olivenza MA, Galván JC, Porro JA, et al. Efficacy of Laser shock processing of biodegradable Mg and Mg-1Zn alloy on their in vitro corrosion and bacterial response[J]. Surf Coat Technol, 2020,384:125320.
doi: 10.1016/j.surfcoat.2019.125320
[15] Pogorielov M, Husak E, Solodivnik A, et al. Magnesium-based biodegradable alloys: degradation, application, and alloying elements[J]. Interv Med Appl Sci, 2017,9(1):27-38.
[16] Myrissa A, Agha NA, Lu YY, et al. In vitro and in vivo comparison of binary Mg alloys and pure Mg[J]. Mater Sci Eng C Mater Biol Appl, 2016,61:865-874.
doi: 10.1016/j.msec.2015.12.064
[17] Atrens A, Johnston S, Shi ZM, et al. Viewpoint-understanding Mg corrosion in the body for biodegradable medical implants[J]. Scr Mater, 2018,154:92-100.
doi: 10.1016/j.scriptamat.2018.05.021
[18] Riaz U, Rahman ZU, Asgar H, et al. An insight into the effect of buffer layer on the electrochemical performance of MgF2 coated magnesium alloy ZK60[J]. Surf Coat Technol, 2018,344:514-521.
doi: 10.1016/j.surfcoat.2018.03.081
[19] Lu XZ, Lai CP, Chan LC. Novel design of a coral-like open-cell porous degradable magnesium implant for orthopaedic application[J]. Mater Des, 2020,188:108474.
doi: 10.1016/j.matdes.2020.108474
[20] Kuhlmann J, Bartsch I, Willbold E, et al. Fast escape of hydrogen from gas cavities around corroding magnesium implants[J]. Acta Biomater, 2013,9(10):8714-8721.
doi: 10.1016/j.actbio.2012.10.008 pmid: 23069319
[21] Liu XW, Sun JK, Zhou FY, et al. Micro-alloying with Mn in Zn-Mg alloy for future biodegradable metals application[J]. Mater Des, 2016,94:95-104.
doi: 10.1016/j.matdes.2015.12.128
[22] Prabhu DB, Gopalakrishnan P, Ravi KR. Coatings on implants: study on similarities and differences between the PCL coatings for Mg based lab coupons and final components[J]. Mater Des, 2017,135:397-410.
doi: 10.1016/j.matdes.2017.09.043
[23] Chen CX, Chen JH, Wu W, et al. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy[J]. Biomaterials, 2019,221:119414.
doi: 10.1016/j.biomaterials.2019.119414
[24] Sezer N, Evis Z, Kayhan SM, et al. Review of magnesium-based biomaterials and their applications[J]. J Magnes Alloy, 2018,6(1):23-43.
doi: 10.1016/j.jma.2018.02.003
[25] Agarwal S, Curtin J, Duffy B, et al. Biodegradable magnesium alloys for orthopaedic applications: a review on corrosion, biocompatibility and surface mo-difications[J]. Mater Sci Eng C Mater Biol Appl, 2016,68:948-963.
doi: 10.1016/j.msec.2016.06.020
[26] Zhang BP, Hou YL, Wang XD, et al. Mechanical pro-perties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions[J]. Mater Sci Eng: C, 2011,31(8):1667-1673.
doi: 10.1016/j.msec.2011.07.015
[27] Perl DP, Moalem S. Aluminum, Alzheimer’s disease and the geospatial occurrence of similar disorders[J]. Rev Mineral Geochem, 2006,64(1):115-134.
doi: 10.2138/rmg.2006.64.4
[28] Cihova M, Martinelli E, Schmutz P, et al. The role of zinc in the biocorrosion behavior of resorbable Mg-Zn-Ca alloys[J]. Acta Biomater, 2019,100:398-414.
doi: S1742-7061(19)30633-6 pmid: 31539653
[29] Dargusch MS, Balasubramani N, Venezuela J, et al. Improved biodegradable magnesium alloys through advanced solidification processing[J]. Scr Mater, 2020,177:234-240.
doi: 10.1016/j.scriptamat.2019.10.028
[30] Li P, Dai JT, Schweizer E, et al. Response of human periosteal cells to degradation products of zinc and its alloy[J]. Mater Sci Eng C Mater Biol Appl, 2020,108:110208.
doi: 10.1016/j.msec.2019.110208
[31] Yuan W, Li B, Chen DF, et al. Formation mechanism, corrosion behavior, and cytocompatibility of microarc oxidation coating on absorbable high-purity zinc[J]. ACS Biomater Sci Eng, 2019,5(2):487-497.
doi: 10.1021/acsbiomaterials.8b01131 pmid: WOS:000458937900011
[32] Yang HT, Qu XH, Lin WJ, et al. Enhanced osseointegration of Zn-Mg composites by tuning the release of Zn ions with sacrificial Mg-rich anode design[J]. ACS Biomater Sci Eng, 2019,5(2):453-467.
doi: 10.1021/acsbiomaterials.8b01137
[33] Wu GS, Ibrahim JM, Chu PK. Surface design of biodegradable magnesium alloys: a review[J]. Surf Coat Technol, 2013,233:2-12.
doi: 10.1016/j.surfcoat.2012.10.009
[34] Mukhametkaliyev TM, Surmeneva MA, Vladescu A, et al. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance[J]. Mater Sci Eng C Mater Biol Appl, 2017,75:95-103.
doi: S0928-4931(16)31473-4 pmid: 28415551
[35] Cao NQ, Le HM, Pham KM, et al. In vitro corrosion and cell response of hydroxyapatite coated Mg matrix in situ composites for biodegradable material applications[J]. Materials (Basel), 2019,12(21):E3474.
[36] Ma LY, Niu J. In vitro biocorrosion and biocompatibility of AZ31 modified with magnesium phosphate coating by chemical deposition[J]. Surfaces Interfaces, 2019,14:208-214.
doi: 10.1016/j.surfin.2018.12.006
[37] Tian QM, Lin JJ, Rivera-Castaneda L, et al. Nano-to-submicron hydroxyapatite coatings for magnesium-based bioresorbable implants-deposition, characterization, degradation, mechanical properties, and cytocompatibility[J]. Sci Rep, 2019,9:810.
doi: 10.1038/s41598-018-37123-3
[38] Webster TJ, Ergun C, Doremus RH, et al. Enhanced functions of osteoblasts on nanophase ceramics[J]. Biomaterials, 2000,21(17):1803-1810.
pmid: 10905463
[39] Narayana PS, Srihari PV. Biofilm resistant surfaces and coatings on implants: a review[J]. Mater Today: Proc, 2019,18:4847-4853.
[40] Webster TJ, Ergun C, Doremus RH, et al. Increased osteoblast adhesion on titanium-coated hydroxylapatite that forms CaTiO3[J]. J Biomed Mater Res A, 2003,67(3):975-980.
pmid: 14613247
[41] Hacking SA, Tanzer M, Harvey EJ, et al. Relative contributions of chemistry and topography to the osseointegration of hydroxyapatite coatings[J]. Clin Orthop Relat Res, 2002(405):24-38.
[42] Liddell RS, Liu ZM, Mendes VC, et al. Relative contributions of implant hydrophilicity and nanotopography to implant anchorage in bone at early time points[J]. Clin Oral Implants Res, 2020,31(1):49-63.
doi: 10.1111/clr.13546 pmid: 31566254
[43] Saberi A, Bakhsheshi-Rad HR, Karamian E, et al. Magnesium-graphene nano-platelet composites: corrosion behavior, mechanical and biological properties[J]. J Alloy Compd, 2020,821:153379.
doi: 10.1016/j.jallcom.2019.153379
[44] Riaz U, Shabib I, Haider W. The current trends of Mg alloys in biomedical applications‒a review[J]. J Biomed Mater Res Part B Appl Biomater, 2019,107(6):1970-1996.
doi: 10.1002/jbm.b.v107.6
[45] Witte F. The history of biodegradable magnesium implants: a review[J]. Acta Biomater, 2010,6(5):1680-1692.
doi: 10.1016/j.actbio.2010.02.028
[46] Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005,26(17):3557-3563.
pmid: 15621246
[47] Waizy H, Diekmann J, Weizbauer A, et al. In vivo study of a biodegradable orthopedic screw (MgYR-EZr-alloy) in a rabbit model for up to 12 months[J]. J Biomater Appl, 2014,28(5):667-675.
doi: 10.1177/0885328212472215
[48] Windhagen H, Radtke K, Weizbauer A, et al. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed Eng Online, 2013,12:62.
doi: 10.1186/1475-925X-12-62 pmid: 23819489
[49] Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties[J]. J Prosthodont, 2006,15(5):321-328.
doi: 10.1111/jopr.2006.15.issue-5
[50] Sugawara A, Fujikawa K, Kusama K, et al. Histopathologic reaction of a calcium phosphate cement for alveolar ridge augmentation[J]. J Biomed Mater Res, 2002,61(1):47-52.
doi: 10.1002/(ISSN)1097-4636
[51] Fujikawa K, Sugawara A, Kusama K, et al. Fluorescent labeling analysis and electron probe microanalysis for alveolar ridge augmentation using calcium phosphate cement[J]. Dent Mater J, 2002,21(4):296-305.
pmid: 12608419
[52] Comuzzi L, Ooms E, Jansen JA. Injectable calcium phosphate cement as a filler for bone defects around oral implants: an experimental study in goats[J]. Clin Oral Implants Res, 2002,13(3):304-311.
doi: 10.1034/j.1600-0501.2002.130311.x
[53] Erbel R, Di Mario C, Bartunek J, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial[J]. Lancet, 2007,369(9576):1869-1875.
doi: 10.1016/S0140-6736(07)60853-8
[54] Wang J, Giridharan V, Shanov V, et al. Flow-induced corrosion behavior of absorbable magnesium-based stents[J]. Acta Biomater, 2014,10(12):5213-5223.
doi: 10.1016/j.actbio.2014.08.034
[1] Wang Miao,Meng Wanrong,Li Longjiang. The new strategies of antimetabolic therapy of cancers based on antiporter of cystine and glutamate [J]. Int J Stomatol, 2024, 51(1): 10-20.
[2] Chang Xinnan,Liu Lei. Applications and research progress of biodegradable magnesium-based materials in craniomaxillofacial surgery [J]. Int J Stomatol, 2024, 51(1): 107-115.
[3] Mao Qirong,Yin Heng,Li Jingtao. Progress in the management of marginal velopharyngeal incompetence [J]. Int J Stomatol, 2024, 51(1): 116-124.
[4] Liu Shiyi, Chen Zhong, Zhang Suxin. Progress in research into programmed death-1/programmed death-ligand 1 immunotherapy strategies in human papillomavirus-positive head and neck squamous cell carcinoma [J]. Int J Stomatol, 2024, 51(1): 21-27.
[5] He Zimu, Li Fenglan. Present application of digital oral positioning stents in radiotherapy of head and neck tumor [J]. Int J Stomatol, 2024, 51(1): 28-35.
[6] Fu Yu, He Wei, Huang Lan. Ferroptosis and its implication in oral diseases [J]. Int J Stomatol, 2024, 51(1): 36-44.
[7] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[8] Luo En. Exploration and clinical application of artificial intelligence in orthognathic surgery [J]. Int J Stomatol, 2022, 49(2): 125-131.
[9] Li Yanfei,Zhang Xinchun. Research progress on the dentin bone repair material [J]. Int J Stomatol, 2022, 49(2): 197-203.
[10] Wu Min,Li Chenghao,Li Yang,Gong Caixia,Shi Bing. Effect of preoperative width of cleft palate on fistula formation after Sommerlad-Furlow technique [J]. Int J Stomatol, 2021, 48(6): 640-643.
[11] Zhang Zhe,Liu Jin,Wang Weihong,Chen Zhiqiang,Yang Chun,Liu Li. Calcium pyrophosphate deposition disease complicated by temporomandibular joint dislocation [J]. Int J Stomatol, 2021, 48(6): 664-667.
[12] Sun Jialin,Lin Yansong,Shi Bing,Jia Zhonglin. Research progress on genetics of five common syndromic subtypes of cleft lip and palate [J]. Int J Stomatol, 2021, 48(6): 718-724.
[13] Wang Yue,Wen Bing,Deng Mengting,Li Jianping. Research advances of low-level laser therapy on peri-implant tissue healing [J]. Int J Stomatol, 2021, 48(6): 725-730.
[14] Zhang Gaowei,Li Chunjie. Development of robotic surgery in otorhinolaryngology head and neck surgery [J]. Int J Stomatol, 2021, 48(5): 614-620.
[15] Liu Yuchen,Tian Min,Niu Lina,Fang Ming. Factors influencing the survival rates of resin-bonded fixed partial dentures and improvement measures [J]. Int J Stomatol, 2021, 48(5): 585-591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .