Int J Stomatol ›› 2021, Vol. 48 ›› Issue (3): 334-340.doi: 10.7518/gjkq.2021021

• Reviews • Previous Articles     Next Articles

Advances in the loading methods of silver nanoparticles on the surface of titanium implants

Zhu Junjin(),Wang Jian.   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodon-tics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-08-09 Revised:2020-12-15 Online:2021-05-01 Published:2021-05-14
  • Supported by:
    National Natural Science Foundation of China(81970985)

Abstract:

Titanium dental implants are commonly used in oral implant repair. However, because they lack intrinsic antibacterial activity, these implants may lead to peri-implantitis and even implant surgery failure when bacterial infection occurs. Silver nanoparticles (Ag NPs), which are antibacterial agents with a wide antibacterial spectrum and low resistance, are commonly used to build antibacterial coatings on titanium implants and amplify their antimicrobial properties. Over the last decade, researchers have conducted numerous studies on the integration of Ag NPs into titanium implants to improve the antibacterial properties of the latter and avoid the cytotoxicity of the former by adjusting their synthesis methods or adding supportive ingredients. This paper reviews the current methods of loading Ag NPs on titanium implants and evaluates their advantages and disadvantages. Methods to increase Ag NPs and reduce their cytotoxicity are also summarized to provide new insights for future research.

Key words: titanium implant, silver nanoparticle, loading method, antibacterial activity, cytotoxicity

CLC Number: 

  • R783.1

TrendMD: 
[1] Li PY, Tong ZF, Huo LN, et al. Antibacterial and biological properties of biofunctionalized nanocompo-sites on titanium for implant application[J]. J Biomater Appl, 2016,31(2):205-214.
doi: 10.1177/0885328216645951
[2] Wiedmer D, Petersen FC, Lönn-Stensrud J, et al. Antibacterial effect of hydrogen peroxide-titanium dioxide suspensions in the decontamination of rough titanium surfaces[J]. Biofouling, 2017,33(6):451-459.
doi: 10.1080/08927014.2017.1322585 pmid: 28524724
[3] Zhang HZ, Yu S, Tian A, et al. Improved antibacte-rial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies[J]. Int J Nanomed, 2013: 4379.
[4] Alt V, Bitschnau A, Osterling J, et al. The effects of combined gentamicin‒hydroxyapatite coating for cementless joint prostheses on the reduction of infection rates in a rabbit infection prophylaxis model[J]. Biomaterials, 2006,27(26):4627-4634.
doi: 10.1016/j.biomaterials.2006.04.035
[5] Gulati K, Aw M, Losic D. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection[J]. Nanoscale Res Lett, 2011,6(1):571.
doi: 10.1186/1556-276X-6-571
[6] Jia HY, Kerr LL. Sustained ibuprofen release using composite poly(lactic-co-glycolic acid)/titanium dioxide nanotubes from Ti implant surface[J]. J Pharm Sci, 2013,102(7):2341-2348.
doi: 10.1002/jps.23580
[7] Nowack B, Krug HF, Height M. 120 years of nanosilver history: implications for policy makers[J]. Environ Sci Technol, 2011,45(4):1177-1183.
doi: 10.1021/es103316q
[8] Cao HL, Liu XY, Meng FH, et al. Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects[J]. Biomaterials, 2011,32(3):693-705.
doi: 10.1016/j.biomaterials.2010.09.066
[9] Jin J, Fei D, Zhang Y, et al. Functionalized titanium implant in regulating bacteria and cell response[J]. Int J Nanomedicine, 2019,14:1433-1450.
doi: 10.2147/IJN
[10] Reidy B, Haase A, Luch A, et al. Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and re-commendations for future studies and applications[J]. Materials (Basel), 2013,6(6):2295-2350.
doi: 10.3390/ma6062295
[11] AshaRani PV, Low Kah Mun G, Hande MP, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells[J]. ACS Nano, 2009,3(2):279-290.
doi: 10.1021/nn800596w pmid: 19236062
[12] Ahamed M, Karns M, Goodson M, et al. DNA da-mage response to different surface chemistry of silver nanoparticles in mammalian cells[J]. Toxicol Appl Pharmacol, 2008,233(3):404-410.
doi: 10.1016/j.taap.2008.09.015
[13] Chernousova S, Epple M. Silver as antibacterial agent: ion, nanoparticle, and metal[J]. Angew Chem Int Ed Engl, 2013,52(6):1636-1653.
doi: 10.1002/anie.v52.6
[14] Liu X, Chu P, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications[J]. Mater Sci Eng R Rep, 2004,47(3/4):49-121.
doi: 10.1016/j.mser.2004.11.001
[15] Conrad JR, Radtke JL, Dodd RA, et al. Plasma source ion-implantation technique for surface modification of materials[J]. J Appl Phys, 1987,62(11):4591-4596.
doi: 10.1063/1.339055
[16] Mei SL, Wang HY, Wang W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes[J]. Biomaterials, 2014,35(14):4255-4265.
doi: 10.1016/j.biomaterials.2014.02.005
[17] Zhu Y, Cao H, Qiao S, et al. Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants[J]. Int J Nanomedicine, 2015,10:6659-6674.
[18] Qiao S, Cao H, Zhao X, et al. Ag-plasma modification enhances bone apposition around titanium dental implants: an animal study in Labrador dogs[J]. Int J Nanomedicine, 2015,10:653-664.
[19] Cao H, Zhang W, Meng F, et al. Osteogenesis catalyzed by titanium-supported silver nanoparticles[J]. ACS Appl Mater Interfaces, 2017,9(6):5149-5157.
doi: 10.1021/acsami.6b15448
[20] Wang GM, Jin WH, Qasim AM, et al. Antibacterial effects of titanium embedded with silver nanoparticles based on electron-transfer-induced reactive oxygen species[J]. Biomaterials, 2017,124:25-34.
doi: 10.1016/j.biomaterials.2017.01.028
[21] He XJ, Zhang XY, Bai L, et al. Antibacterial ability and osteogenic activity of porous Sr/Ag-containing TiO2 coatings[J]. Biomed Mater, 2016,11(4):045008.
doi: 10.1088/1748-6041/11/4/045008
[22] Kheur S, Singh N, Bodas D, et al. Nanoscale silver depositions inhibit microbial colonization and improve biocompatibility of titanium abutments[J]. Colloids Surf B Biointerfaces, 2017,159:151-158.
doi: 10.1016/j.colsurfb.2017.07.079
[23] Lampé I, Beke D, Biri S, et al. Investigation of silver nanoparticles on titanium surface created by ion implantation technology[J]. Int J Nanomed, 2019,14:4709-4721.
doi: 10.2147/IJN
[24] Song DH, Uhm SH, Lee SB, et al. Antimicrobial silver-containing titanium oxide nanocomposite coa-tings by a reactive magnetron sputtering[J]. Thin So-lid Films, 2011,519(20):7079-7085.
[25] Abuayyash A, Ziegler N, Meyer H, et al. Enhanced antibacterial performance of ultrathin silver/platinum nanopatches by a sacrificial anode mechanism[J]. Nanomedicine, 2020,24:102126.
doi: S1549-9634(19)30210-2 pmid: 31734515
[26] Durán N, Durán M, de Jesus MB, et al. Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity[J]. Nanomedicine, 2016,12(3):789-799.
[27] Abbasi E, Milani M, Fekri Aval S, et al. Silver nanoparticles: synjournal methods, bio-applications and properties[J]. Crit Rev Microbiol, 2016,42(2):173-180.
[28] Pokrowiecki R, Zareba T, Szaraniec B, et al. In vitro studies of nanosilver-doped titanium implants for oral and maxillofacial surgery[J]. Int J Nanomed, 2017,12:4285-4297.
doi: 10.2147/IJN.S131163 pmid: 28652733
[29] Gunputh UF, Le HR, Handy RD, et al. Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants[J]. Mater Sci Eng C Mater Biol Appl, 2018,91:638-644.
doi: 10.1016/j.msec.2018.05.074
[30] Li M, Liu XM, Xu ZQ, et al. Dopamine modified organic‒inorganic hybrid coating for antimicrobial and osteogenesis[J]. ACS Appl Mater Interfaces, 2016,8(49):33972-33981.
doi: 10.1021/acsami.6b09457
[31] Zhu M, Liu X, Tan L, et al. Photo-responsive chitosan/Ag/MoS2 for rapid bacteria-killing[J]. J Hazard Mater, 2020,383:121122.
doi: 10.1016/j.jhazmat.2019.121122
[32] Guan M, Chen Y, Wei Y, et al. Long-lasting bactericidal activity through selective physical puncture and controlled ions release of polydopamine and silver nanoparticles-loaded TiO2 nanorods in vitro and in vivo[J]. Int J Nanomedicine, 2019,14:2903-2914.
doi: 10.2147/IJN
[33] Jin J, Zhang L, Shi M, et al. Ti-GO-Ag nanocompo-site: the effect of content level on the antimicrobial activity and cytotoxicity[J]. Int J Nanomedicine, 2017,12:4209-4224.
doi: 10.2147/IJN
[34] Xu Z, Li M, Li X, et al. Antibacterial activity of silver doped titanate nanowires on Ti implants[J]. ACS Appl Mater Interfaces, 2016,8(26):16584-16594.
doi: 10.1021/acsami.6b04161
[35] Zhao CJ, Feng B, Li YT, et al. Preparation and antibacterial activity of titanium nanotubes loaded with Ag nanoparticles in the dark and under the UV light[J]. Appl Surf Sci, 2013,280:8-14.
doi: 10.1016/j.apsusc.2013.04.057
[36] Yuan Z, Liu P, Hao Y, et al. Construction of Ag-incorporated coating on Ti substrates for inhibited bacterial growth and enhanced osteoblast response[J]. Colloids Surf B Biointerfaces, 2018,171:597-605.
doi: 10.1016/j.colsurfb.2018.07.064
[37] Li B, Ma J, Wang D, et al. Self-adjusting antibacte-rial properties of Ag-incorporated nanotubes on micro-nanostructured Ti surfaces[J]. Biomater Sci, 2019,7(10):4075-4087.
doi: 10.1039/C9BM00862D
[38] 马千里. 纯钛牙科种植体材料表面阳极氧化及载银处理的生物学研究[D]. 西安: 第四军医大学, 2011: 26.
Ma QL. Biological research of titanium dental im-plant materials surface anodization and Ag-loading[D]. Xi,an: The Fourth Military Medical University, 2011: 26.
[39] Besinis A, Hadi SD, Le HR, et al. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings[J]. Nanotoxicology, 2017,11(3):327-338.
doi: 10.1080/17435390.2017.1299890 pmid: 28281851
[40] Zhang LC, Zhang LH, Yang Y, et al. Inhibitory effect of super-hydrophobicity on silver release and antibacterial properties of super-hydrophobic Ag/TiO2 nanotubes[J]. J Biomed Mater Res B Appl Biomater, 2016,104(5):1004-1012.
doi: 10.1002/jbm.b.v104.5
[41] Huang R, Li WZ, Lv X, et al. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing[J]. Biomaterials, 2015,53:58-75.
doi: 10.1016/j.biomaterials.2015.02.076 pmid: 25890707
[42] Zhong X, Song YJ, Yang P, et al. Titanium surface priming with phase-transited lysozyme to establish a silver nanoparticle-loaded chitosan/hyaluronic a-cid antibacterial multilayer via layer-by-layer self-assembly[J]. PLoS One, 2016,11(1):e0146957.
doi: 10.1371/journal.pone.0146957
[43] Li W, Yang Y, Zhang H, et al. Improvements on biological and antimicrobial properties of titanium modified by AgNPs-loaded chitosan-heparin polyelectrolyte multilayers[J]. J Mater Sci Mater Med, 2019,30(5):52.
doi: 10.1007/s10856-019-6250-x
[44] Zhang XM, Li ZY, Yuan XB, et al. Cytotoxicity and antibacterial property of titanium alloy coated with silver nanoparticle-containing polyelectrolyte multilayer[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(5):2816-2820.
doi: 10.1016/j.msec.2013.03.010
[45] Qiu WZ, Wu GP, Xu ZK. Robust coatings via catechol-amine codeposition: mechanism, kinetics, and application[J]. ACS Appl Mater Interfaces, 2018,10(6):5902-5908.
doi: 10.1021/acsami.7b18934
[46] GhavamiNejad A, Rajan Unnithan A, Ramachandra Kurup Sasikala A, et al. Mussel-inspired electrospun nanofibers functionalized with size-controlled silver nanoparticles for wound dressing application[J]. ACS Appl Mater Interfaces, 2015,7(22):12176-12183.
doi: 10.1021/acsami.5b02542
[47] Ding XY, Zhang YM, Ling JY, et al. Rapid mussel-inspired synjournal of PDA-Zn-Ag nanofilms on TiO2 nanotubes for optimizing the antibacterial activity and biocompatibility by doping polydopamine with zinc at a higher temperature[J]. Colloids Surf B Biointerfaces, 2018,171:101-109.
doi: 10.1016/j.colsurfb.2018.07.014
[48] Zhang Y, Dong C, Yang S, et al. Enhanced silver loaded antibacterial titanium implant coating with novel hierarchical effect[J]. J Biomater Appl, 2018,32(9):1289-1299.
doi: 10.1177/0885328218755538
[49] Cheng YF, Zhang JY, Wang YB, et al. Deposition of catechol-functionalized chitosan and silver nanoparticles on biomedical titanium surfaces for antibacterial application[J]. Mater Sci Eng C Mater Biol Appl, 2019,98:649-656.
doi: S0928-4931(18)31624-2 pmid: 30813068
[50] Xie K, Zhou Z, Guo Y, et al. Long-term prevention of bacterial infection and enhanced osteoinductivity of a hybrid coating with selective silver toxicity[J]. Adv Healthc Mater, 2019,8(5):e1801465.
[51] Horzum N, Boyaci E, Eroğlu AE, et al. Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations[J]. Biomacromolecules, 2010,11(12):3301-3308.
doi: 10.1021/bm100755x
[52] Marpu S, Benton E. Shining light on chitosan: a review on the usage of chitosan for photonics and nanomaterials research[J]. Int J Mol Sci, 2018,19(6):1795.
doi: 10.3390/ijms19061795
[53] van Hengel IAJ, Riool M, Fratila-Apachitei LE, et al. Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Sta-phylococcus aureus[J]. Biomaterials, 2017,140:1-15.
doi: 10.1016/j.biomaterials.2017.02.030
[54] van Hengel IAJ, Putra NE, Tierolf MWAM, et al. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria[J]. Acta Biomater, 2020,107:325-337.
doi: S1742-7061(20)30132-X pmid: 32145392
[55] Tian B, Chen W, Yu DG, et al. Fabrication of silver nanoparticle-doped hydroxyapatite coatings with oriented block arrays for enhancing bactericidal effect and osteoinductivity[J]. J Mech Behav Biomed Mater, 2016,61:345-359.
doi: S1751-6161(16)30066-2 pmid: 27107263
[56] Gunputh UF, Le HR, Lawton K, et al. Antibacterial properties of silver nanoparticles grown in situ and anchored to titanium dioxide nanotubes on titanium implant against Staphylococcus aureus[J]. Nanotoxicology, 2020,14(1):97-110.
doi: 10.1080/17435390.2019.1665727
[1] Wu Sijia,Shu Chang,Wang Yang,Wang Yuan,Deng Shuli,Wang Huiming.. Effect and research progress on root canal infection management of regenerative endodontic procedure in immature permanent teeth [J]. Int J Stomatol, 2023, 50(4): 388-394.
[2] Zhang Jingyi,Li Danwei,Sun Yu,Lei Yayan,Liu Tao,Gong Yu. In vitro cytotoxicity of composite resin and compomer and effect on osteogenic differentiation of osteoblasts [J]. Int J Stomatol, 2022, 49(4): 412-419.
[3] Yuhao Liu,Quan Yuan,Shiwen Zhang. Recent research progress on the drug-loaded antibacterial coatings of titanium implants based on covalent grafting [J]. Inter J Stomatol, 2019, 46(2): 228-233.
[4] Xingying Qi,Guoying Zheng,Lei. Sui. Effects of titanium implant surface topographies on osteogenesis [J]. Inter J Stomatol, 2018, 45(5): 527-533.
[5] Liu Dan, Ren Biao, Cheng Lei.. Research development of silver nanoparticle on prevention and treatment of oral infectious disease [J]. Inter J Stomatol, 2018, 45(4): 408-413.
[6] Chen Xiuchun, Zhang Zhimin, Hong Lihua, Zhang Yaqi, Zheng Peng, Li Wenyue. Cytotoxic mechanism of triethylene glycol dimethacrylate [J]. Inter J Stomatol, 2018, 45(2): 209-213.
[7] Liu Yi1, Zhou Rongjing2, Fei Wei1.. Immunohistochemical localization and antimicrobial properties of high mobility group protein N2 [J]. Inter J Stomatol, 2016, 43(6): 661-665.
[8] Yu Wenwen, Wang Xu, Sun Xinhua. Research progress on biological safety of orthodontic metallic appliance [J]. Inter J Stomatol, 2015, 42(5): 592-596.
[9] Fan Jian, Zou Gengsen, Chen Jiang. Immune response of the body to nanomodified titanium implant surfaces [J]. Inter J Stomatol, 2014, 41(6): 691-693.
[10] Wu Yuhong, Lin Juhong, Zhang Hongmei. Physicochemical and biological properties of Portland cement and mineral trioxide aggregate and their applications [J]. Inter J Stomatol, 2014, 41(6): 699-702.
[11] Zhuang Xiumei, Deng Feilong.. Effect and mechanism of titanium with nanoscale surface modification for osseointegration [J]. Inter J Stomatol, 2014, 41(4): 427-430.
[12] Yan Wen, Li Wei.. Cytotoxicity and genotoxicity of dental filling materials utilized in endodontic thera [J]. Inter J Stomatol, 2013, 40(5): 608-611.
[13] Liu Panlong1,Zhou Hongyan2,Wang Dongmiao3,Mei Yufeng1.. Research progress on pathogenesis of dental fluorosis [J]. Inter J Stomatol, 2013, 40(1): 94-97.
[14] Liu Yuanyuan1, Li Guo1, Ren Jiayin1, Zhao Shuping1, Nie Jing2, Wang Hu1.. The osseointegration research of the interface between bone and implant coating by nano-scale titanium thin film [J]. Inter J Stomatol, 2012, 39(3): 312-316.
[15] Zhao Fei, Wang Ge.. Research progress on the cell regulation mechanisms of chronic toxicity of dental casting alloys [J]. Inter J Stomatol, 2012, 39(2): 244-247.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .