国际口腔医学杂志 ›› 2020, Vol. 47 ›› Issue (3): 257-262.doi: 10.7518/gjkq.2020045

• 间充质干细胞专栏 • 上一篇    下一篇

环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展

杨叶青1,2,陈明1,2,吴补领1,2()   

  1. 1.南方医科大学南方医院口腔科 广州 510515;
    2.南方医科大学口腔医学院 广州 510515
  • 收稿日期:2019-05-25 修回日期:2019-10-12 出版日期:2020-05-01 发布日期:2020-05-08
  • 通讯作者: 吴补领
  • 作者简介:杨叶青,学士,Email:yangyeqing2344@126.com
  • 基金资助:
    国家自然科学基金(81870755);国家自然科学基金(81600882)

Research progress on circular RNA in the osteogenic differentiation of mesenchymal stem cells

Yang Yeqing1,2,Chen Ming1,2,Wu Buling1,2()   

  1. 1.Dept. of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
    2.School of Stomatology, Southern Medical University, Guangzhou 510515, China
  • Received:2019-05-25 Revised:2019-10-12 Online:2020-05-01 Published:2020-05-08
  • Contact: Buling Wu
  • Supported by:
    National Natural Science Foundation of China(81870755);National Natural Science Foundation of China(81600882)

摘要:

间充质干细胞是一类具有自我更新和多向分化潜能的成体干细胞。随着对间充质干细胞研究的不断深入,对间充质干细胞的生物学特性、分化能力及临床应用有了进一步认识。环状RNA(circRNA)是在真核细胞中广泛存在且多样的内源性非编码RNA,形成共价、闭合、连续稳定的环状结构,能够发挥微小RNA分子海绵作用,调控基因转录和选择性剪接。多项研究已经证实circRNA在间充质干细胞成骨向分化过程中发挥了重要作用,是细胞分化的重要调控靶点,参与维持细胞分化特性,并且从不同的角度和不同水平研究了circRNA的调控机制。本文对目前circRNA在不同间充质干细胞成骨向分化过程中的相关研究进行综述。

关键词: 间充质干细胞, 成骨向分化, 环状RNA

Abstract:

Mesenchymal stem cells (MSCs) are adult stem cells with self-renewal and multi-directional differentiation proficiency. The increasing number of studies on MSCs has allowed people to further understand their biological characteristics, differentiation ability and clinical application. Circular RNA (circRNA) is a kind of universal and diverse endogenous non-coding RNA, which is widely found in eukaryotic cells. The circular structure is covalently closed, continuous and stable. circRNA has many functions, such as microRNA sponges and regulators of alternative splicing and gene expression. Studies have shown that circRNA is a vital regulated target that plays an important role in the osteogenic differentiation of MSCs to maintain the characteristics of differentiation. This article reviews the current research on the effects of circRNA on the osteogenic differentiation of MSCs.

Key words: mesenchymal stem cell, osteogenic differentiation, circular RNA

中图分类号: 

  • Q254
[1] Qu S, Yang X, Li X , et al. Circular RNA: a new star of noncoding RNAs[J]. Cancer Lett, 2015,365(2):141-148.
doi: 10.1016/j.canlet.2015.06.003 pmid: 26052092
[2] Jeck WR, Sorrentino JA, Wang K , et al. Circular RNAs are abundant, conserved, and associated with ALU repeats[J]. RNA, 2013,19(2):141-157.
doi: 10.1261/rna.035667.112 pmid: 23249747
[3] Salzman J, Chen RE, Olsen MN , et al. Cell-type specific features of circular RNA expression[J]. PLoS Genet, 2013,9(9):e1003777.
doi: 10.1371/journal.pgen.1003777 pmid: 24039610
[4] Li J, Yang J, Zhou P , et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015,5(2):472-480.
pmid: 25973291
[5] Wang F, Nazarali AJ, Ji S . Circular RNAs as poten-tial biomarkers for cancer diagnosis and therapy[J]. Am J Cancer Res, 2016,6(6):1167-1176.
pmid: 27429839
[6] Burd CE, Jeck WR, Liu Y , et al. Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk[J]. PLoS Genet, 2010,6(12):e1001233.
doi: 10.1371/journal.pgen.1001233 pmid: 21151960
[7] Ghosal S, Das S, Sen R , et al. Circ2Traits: a compre-hensive database for circular RNA potentially asso-ciated with disease and traits[J]. Front Genet, 2013,4:283.
[8] Lukiw WJ . Circular RNA (circRNA) in Alzheimer’s disease (AD)[J]. Front Genet, 2013,4:307.
doi: 10.3389/fgene.2013.00307 pmid: 24427167
[9] Ashwal-Fluss R, Meyer M, Pamudurti NR , et al. circRNA biogenesis competes with pre-mRNA spli-cing[J]. Mol Cell, 2014,56(1):55-66.
doi: 10.1016/j.molcel.2014.08.019 pmid: 25242144
[10] Xu H, Guo S, Li W , et al. The circular RNA Cdr1as, via miR-7 and its targets, regulates insulin transcrip-tion and secretion in islet cells[J]. Sci Rep, 2015,5:12453.
doi: 10.1038/srep12453 pmid: 26211738
[11] Li F, Zhang L, Li W , et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway[J]. Oncotarget, 2015,6(8):6001-6013.
doi: 10.18632/oncotarget.3469 pmid: 25749389
[12] Heo JS, Choi Y, Kim HS , et al. Comparison of mo-lecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue[J]. Int J Mol Med, 2016,37(1):115-125.
doi: 10.3892/ijmm.2015.2413 pmid: 26719857
[13] Pires AO, Mendes-Pinheiro B, Teixeira FG , et al. Unveiling the differences of secretome of human bone marrow mesenchymal stem cells, adipose tissue-derived stem cells, and human umbilical cord perivascular cells: a proteomic analysis[J]. Stem Cells Dev, 2016,25(14):1073-1083.
doi: 10.1089/scd.2016.0048 pmid: 27226274
[14] 周洁, 王颖, 张雷 , 等. 牙源性干细胞的特点及其在骨组织工程中的应用[J]. 国际口腔医学杂志, 2018,45(3):280-285.
Zhou J, Wang Y, Zhang L , et al. Characteristics of dental tissue-derived stem cells and their application in bone tissue engineering[J]. Int J Stomatol, 2018,45(3):280-285.
[15] 叶青松, 王晓燕 . 牙源性干细胞储存和临床应用的研究进展[J]. 口腔疾病防治, 2018,26(1):15-25.
Ye QS, Wang XY . Progress in storage and clinical application of dental stem cells[J]. J Dent Prev Treat, 2018,26(1):15-25.
[16] Laino G, d’Aquino R, Graziano A , et al. A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB)[J]. J Bone Miner Res, 2005(8):1394-1402.
doi: 10.1359/JBMR.050325 pmid: 16007337
[17] Amir LR, Suniarti DF, Utami S , et al. Chitosan as a potential osteogenic factor compared with dexame-thasone in cultured macaque dental pulp stromal cells[J]. Cell Tissue Res, 2014,358(2):407-415.
doi: 10.1007/s00441-014-1938-1 pmid: 24992928
[18] Seo BM, Sonoyama W, Yamaza T , et al. SHED repair critical-size calvarial defects in mice[J]. Oral Dis, 2008,14(5):428-434.
doi: 10.1111/j.1601-0825.2007.01396.x pmid: 18938268
[19] Bahn JH, Zhang Q, Li F , et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J]. Clin Chem, 2015,61(1):221-230.
doi: 10.1373/clinchem.2014.230433 pmid: 25376581
[20] 张雄, 陈良娇, 兰泽栋 . 基因芯片筛选人牙周膜干细胞成骨向分化生物学标记物的研究[J]. 广东医学, 2016,37(14):2080-2083.
Zhang X, Chen LJ, Lan ZD . Screening of biomarkers for osteogenic differentiation of human periodontal ligament stem cells by gene chip[J]. Guangdong Med J, 2016,37(14):2080-2083.
[21] Zheng Y, Li X, Huang Y , et al. The circular RNA landscape of periodontal ligament stem cells during osteogenesis[J]. J Periodontol, 2017,88(9):906-914.
doi: 10.1902/jop.2017.170078 pmid: 28598284
[22] Gu X, Li M, Jin Y , et al. Identification and integrated analysis of differentially expressed lncRNAs and circRNAs reveal the potential ceRNA networks during PDLSC osteogenic differentiation[J]. BMC Genet, 2017,18(1):100.
doi: 10.1186/s12863-017-0569-4 pmid: 29197342
[23] Wang H, Feng C, Jin Y , et al. Identification and cha-racterization of circular RNAs involved in mechanical force-induced periodontal ligament stem cells[J]. J Cell Physiol, 2019,234(7):10166-10177.
doi: 10.1002/jcp.27686 pmid: 30422310
[24] Li Y, Zheng Q, Bao C , et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015,25(8):981-984.
doi: 10.1038/cr.2015.82 pmid: 26138677
[25] Cui Y, Luan J, Li H , et al. Exosomes derived from mineralizing osteoblasts promote ST2 cell osteogenic differentiation by alteration of microRNA expression[J]. FEBS Lett, 2016,590(1):185-192.
doi: 10.1002/1873-3468.12024 pmid: 26763102
[26] Yan YX, Gong YW, Guo Y , et al. Mechanical strain regulates osteoblast proliferation through integrin-mediated ERK activation[J]. PLoS One, 2012,7(4):e35709.
doi: 10.1371/journal.pone.0035709 pmid: 22539993
[27] Raicevic G, Najar M, Pieters K , et al. Inflammation and Toll-like receptor ligation differentially affect the osteogenic potential of human mesenchymal stromal cells depending on their tissue origin[J]. Tissue Eng Part A, 2012,18(13/14):1410-1418.
doi: 10.1089/ten.TEA.2011.0434 pmid: 22429150
[28] Li C, Li B, Dong Z , et al. Lipopolysaccharide dif-ferentially affects the osteogenic differentiation of periodontal ligament stem cells and bone marrow mesenchymal stem cells through Toll-like receptor 4 mediated nuclear factor κB pathway[J]. Stem Cell Res Ther, 2014,5(3):67.
doi: 10.1186/scrt456 pmid: 24887697
[29] Huang J, Zhao L, Xing L , et al. MicroRNA-204 re-gulates Runx2 protein expression and mesenchymal progenitor cell differentiation[J]. Stem Cells, 2010,28(2):357-364.
[30] Wang H, Meng Y, Cui Q , et al. MiR-101 targets the EZH2/Wnt/β-catenin the pathway to promote the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells[J]. Sci Rep, 2016,6:36988.
doi: 10.1038/srep36988 pmid: 27845386
[31] Zhang ZC, Liu JX, Shao ZW , et al. In vitro effect of microRNA-107 targeting Dkk-1 by regulation of Wnt/β-catenin signaling pathway in osteosarcoma[J]. Medicine (Baltimore), 2017,96(27):e7245.
doi: 10.1097/MD.0000000000007245 pmid: 28682874
[32] Li X, Zheng Y, Zheng Y , et al. Circular RNA CDR1as regulates osteoblastic differentiation of periodontal ligament stem cells via the miR-7/GDF5/SMAD and p38 MAPK signaling pathway[J]. Stem Cell Res Ther, 2018,9(1):232.
doi: 10.1186/s13287-018-0976-0 pmid: 30170617
[33] 占云燕, 张皓, 杨国斌 , 等. 小鼠牙乳头细胞向成牙本质细胞向分化过程中环状RNA的表达谱研究[J]. 口腔医学研究, 2018,34(4):371-374.
Zhan YY, Zhang H, Yang GB , et al. Analysis of circle RNA expression profile variation during odon-toblastic differentiation of mouse dental papilla cells[J]. J Oral Sci Res, 2018,34(4):371-374.
[34] Li Z, Li N, Ge X , et al. Differential circular RNA expression profiling during osteogenic differentiation of stem cells from apical papilla[J]. Epigenomics, 2019,11(9):1057-1073.
doi: 10.2217/epi-2018-0184 pmid: 31140301
[35] Li X, Peng B, Zhu X , et al. Changes in related circular RNAs following ERβ knockdown and the relation-ship to rBMSC osteogenesis[J]. Biochem Biophys Res Commun, 2017,493(1):100-107.
doi: 10.1016/j.bbrc.2017.09.068 pmid: 28919414
[36] Zhang M, Jia L , Zheng Y. circRNA expression pro-files in human bone marrow stem cells undergoing osteoblast differentiation[J]. Stem Cell Rev Rep, 2019,15(1):126-138.
doi: 10.1007/s12015-018-9841-x pmid: 30046991
[37] 赵可伟 . 绝经后骨质疏松环状RNA表达谱研究及潜在分子标志物筛选[D]. 广州: 南方医科大学, 2018.
Zhao KW . Microarry analysis of circular RNA expression profile and the screening of potential biomarkers for postmenopausal osteoporosis[D]. Guangzhou: Southern Medical University, 2018.
[38] Yin Q, Wang J, Fu Q , et al. CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteopo-rosis[J]. J Cell Mol Med, 2018, (12):6112-6121.
doi: 10.1111/jcmm.13888 pmid: 30324718
[39] Yang L, Zeng Z, Kang N , et al. Circ-VANGL1 pro-motes the progression of osteoporosis by absorbing miRNA-217 to regulate RUNX2 expression[J]. Eur Rev Med Pharmacol Sci, 2019,23(3):949-957.
doi: 10.26355/eurrev_201902_16981 pmid: 30779060
[40] Ren W, Yang L, Deng T , et al. Calcitonin gene-related peptide regulates FOSL2 expression and cell proliferation of BMSCs via mmu_circRNA_003795[J]. Mol Med Rep, 2019,19(5):3732-3742.
doi: 10.3892/mmr.2019.10038 pmid: 30896827
[41] Qian DY, Yan GB, Bai B , et al. Differential circRNA expression profiles during the BMP2-induced osteo-genic differentiation of MC3T3-E1 cells[J]. Biomed Pharmacother, 2017,90:492-499.
doi: 10.1016/j.biopha.2017.03.051 pmid: 28395271
[42] Long T, Guo Z, Han L , et al. Differential expression profiles of circular RNAs during osteogenic differen-tiation of mouse adipose-derived stromal cells[J]. Calcif Tissue Int, 2018,103(3):338-352.
doi: 10.1007/s00223-018-0426-0 pmid: 29700558
[43] Li S, Lin C, Zhang J , et al. Quaking promotes the odontoblastic differentiation of human dental pulp stem cells[J]. J Cell Physiol, 2018,233(9):7292-7304.
doi: 10.1002/jcp.26561 pmid: 29663385
[1] 李立恒,王蕊,王晓明,张智轶,张璇,安峰,王芹,张凡. 环状RNA hsa_circ_0085576调控微小RNA-498/B细胞特异性莫洛尼鼠白血病病毒整合位点1轴对口腔鳞状细胞癌细胞迁移和侵袭的影响[J]. 国际口腔医学杂志, 2024, 51(1): 60-67.
[2] 李佩桐,时彬冕,许春梅,谢旭东,王骏. Gli1阳性间充质干细胞在牙及牙周组织中的分布及作用[J]. 国际口腔医学杂志, 2023, 50(1): 37-42.
[3] 张静怡,李丹薇,孙宇,雷雅燕,刘涛,龚瑜. 复合树脂及复合体对成骨细胞毒性及成骨向分化的影响[J]. 国际口腔医学杂志, 2022, 49(4): 412-419.
[4] 洪娅娅,陈学鹏,姒蜜思. 非编码RNA调控牙囊干细胞成骨分化的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 263-271.
[5] 施培磊,于晨浩,谢旭东,吴亚菲,王骏. 牙源性间充质干细胞应用于牙周组织缺损修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(6): 690-695.
[6] 邓诗勇,宫苹,谭震. 脑和肌肉芳香烃受体核转运样蛋白1基因调控口腔及全身骨代谢的作用[J]. 国际口腔医学杂志, 2021, 48(2): 198-204.
[7] 陈野, 周丰, 邬琼辉, 车会凌, 李佳璇, 申佳琪, 罗恩. 脂联素对骨髓间充质干细胞的作用及其调控机制[J]. 国际口腔医学杂志, 2021, 48(1): 58-63.
[8] 吕辉,王华,孙雯. 辅助性T细胞17与牙周炎骨免疫[J]. 国际口腔医学杂志, 2020, 47(6): 661-668.
[9] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[10] 朱明静,张清彬. 生长因子诱导间充质干细胞三维体外软骨形成的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 270-277.
[11] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[12] 吴晓楠,马宁,侯建霞. 不同干细胞来源外泌体在牙周再生领域的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 146-151.
[13] 冯顶丽,卓丽丹,芦笛,郭红延. 微小RNA调节间充质干细胞软骨分化机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 640-645.
[14] 葛逸弘, 房付春, 吴补领. 长链非编码RNA在间充质干细胞多向分化过程中的调节作用[J]. 国际口腔医学杂志, 2018, 45(3): 267-271.
[15] 刘珍珍, 方蛟, 赵静辉, 邹净亭, 相星辰, 王佳, 周延民. 牙龈干细胞生物学潜能的研究进展[J]. 国际口腔医学杂志, 2018, 45(1): 55-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .