国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (5): 565-570.doi: 10.7518/gjkq.2019079

• 综述 • 上一篇    下一篇

静电纺丝纤维作为牙周药物传递系统的研究进展

程国平,丁一,郭淑娟()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙周病科 成都 610041
  • 收稿日期:2018-11-09 修回日期:2019-05-21 出版日期:2019-09-01 发布日期:2019-09-10
  • 通讯作者: 郭淑娟 E-mail:guo.shujuan@yahoo.com
  • 作者简介:程国平,住院医师,硕士,Email: 1187514641@qq.com
  • 基金资助:
    国家重点基础研究发展计划(973计划)项目(2013CBA01705-1)

Progress in electrospun fibres as periodontal drug delivery systems

Cheng Guoping,Ding Yi,Guo Shujuan()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2018-11-09 Revised:2019-05-21 Online:2019-09-01 Published:2019-09-10
  • Contact: Shujuan Guo E-mail:guo.shujuan@yahoo.com
  • Supported by:
    This study was supported by National Key Basic Research Development Plan (973 Plan)(2013CBA01705-1)

摘要:

静电纺丝技术是利用聚合物溶液或熔体在高压电场作用下形成喷射流拉伸从而形成纳米/微米级直径纤维的技术,其制备的生物支架材料具有生物相容性好、比表面积大、孔隙率高、易改性和成本低等优点,在再生医学、组织工程、创伤敷料、医用纺织材料和药物传递系统等领域研究广泛,作为牙周药物传递系统也具有良好的应用前景。本文就静电纺丝技术和静电纺丝纤维作为牙周药物传递系统的载药方式、载药类型、作用方式、应用形式及前景展望等方面进行综述。

关键词: 静电纺丝, 牙周病, 药物传递系统, 生物活性分子

Abstract:

Electrospun synthesizes nanometer or micrometer fibers used by polymer solutions or melts under high-voltage electric fields. Electrospun fibers have the advantages of good biocompatibility, large specific surface area, high porosity, easy modification and low cost, they are widely used in regenerative medicine, tissue engineering, wound dressing, medical textile materials and drug delivery systems. Electrospun fibres also have good application prospects as periodontal drug delivery systems. Progress in electrospun fibres as periodontal drug delivery systems is summarized.

Key words: electrospun fibres, periodontal disease, drug delivery, bioactive molecule

中图分类号: 

  • R781.4 +2
[1] Larsson L, Decker AM, Nibali L , et al. Regenerative medicine for periodontal and peri-implant diseases[J]. J Dent Res, 2016,95(3):255-266.
[2] Greiner A, Wendorff JH . Electrospinning: a fascinating method for the preparation of ultrathin fibers[J]. Angew Chem Int Ed Engl, 2007,46(30):5670-5703.
[3] Bhardwaj N, Kundu SC . Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnol Adv, 2010,28(3):325-347.
[4] Valizadeh A, Mussa Farkhani S . Electrospinning and electrospun nanofibers[J]. IET Nanobiotechnol, 2014,8(2):83-92.
[5] Raeisdasteh Hokmabad V, Davaran S, Ramazani A , et al. Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering[J]. J Biomater Sci Polym Ed, 2017,28(16):1797-1825.
[6] Ngadiman NHA, Noordin MY, Idris A , et al. A review of evolution of electrospun tissue engineering scaffold: from two dimensions to three dimensions[J]. Proc Inst Mech Eng H, 2017,231(7):597-616.
[7] McClellan P, Landis WJ . Recent applications of coaxial and emulsion electrospinning methods in the field of tissue engineering[J]. Biores Open Access, 2016,5(1):212-227.
[8] Moradi SL, Golchin A, Hajishafieeha Z , et al. Bone tissue engineering: adult stem cells in combination with electrospun nanofibrous scaffolds[J]. J Cell Physiol, 2018,233(10):6509-6522.
[9] Wright ME, Parrag IC, Yang M , et al. Electrospun polyurethane nanofiber scaffolds with ciprofloxacin oligomer versus free ciprofloxacin: effect on drug release and cell attachment[J]. J Control Release, 2017,250:107-115.
[10] Cheng H, Yang X, Che X , et al. Biomedical application and controlled drug release of electrospun fibrous materials[J]. Mater Sci Eng C Mater Biol Appl, 2018,90:750-763.
[11] He P, Zhong Q, Ge Y , et al. Dual drug loaded coaxial electrospun PLGA/PVP fiber for guided tissue regeneration under control of infection[J]. Mater Sci Eng C Mater Biol Appl, 2018,90:549-556.
[12] Chou SF, Carson D, Woodrow KA . Current strategies for sustaining drug release from electrospun nanofibers[J]. J Control Release, 2015,220(Pt B):584-591.
[13] Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP , et al. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2016,58:521-531.
[14] Khalf A, Madihally SV . Recent advances in multiaxial electrospinning for drug delivery[J]. Eur J Pharm Biopharm, 2017,112:1-17.
[15] Khalf A, Madihally SV . Modeling the permeability of multiaxial electrospun poly(ε-caprolactone)-gelatin hybrid fibers for controlled doxycycline release[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:161-170.
[16] Bottino MC, Thomas V, Janowski GM . A novel spatially designed and functionally graded electrospun membrane for periodontal regeneration[J]. Acta Biomater, 2011,7(1):216-224.
[17] Torres-Martinez EJ, Cornejo Bravo JM, Serrano Medina A , et al. A summary of electrospun nanofibers as drug delivery system: drugs loaded and biopolymers used as matrices[J]. Curr Drug Deliv, 2018,15(10):1360-1374.
[18] Hamed R , AbuRezeq A, Tarawneh O. Development of hydrogels, oleogels, and bigels as local drug delivery systems for periodontitis[J]. Drug Dev Ind Pharm, 2018,44(9):1488-1497.
[19] Chaturvedi TP, Srivastava R, Srivastava AK , et al. Doxycycline poly e-caprolactone nanofibers in patients with chronic periodontitis—a clinical evaluation[J]. J Clin Diagn Res, 2013,7(10):2339-2342.
[20] Song J, Klymov A, Shao J , et al. Electrospun nanofibrous silk fibroin membranes containing gelatin nanospheres for controlled delivery of biomolecules[J]. Adv Healthc Mater, 2017,6(14). doi: 10.1002/adhm.201700014.
[21] Schkarpetkin D, Reise M, Wyrwa R , et al. Development of novel electrospun dual-drug fiber mats loaded with a combination of ampicillin and metronidazole[J]. Dent Mater, 2016,32(8):951-960.
[22] Zhao P, Xue Y, Gao W , et al. Bacillaceae-derived peptide antibiotics since 2000[J]. Peptides, 2018,101:10-16.
[23] He Y, Jin Y, Wang X , et al. An antimicrobial peptide-loaded gelatin/chitosan nanofibrous membrane fabricated by sequential layer-by-layer electrospinning and electrospraying techniques[J]. Nanomaterials (Basel), 2018,8(5). doi: 10.3390/nano8050327.
[24] Yar M, Farooq A, Shahzadi L , et al. Novel meloxicam releasing electrospun polymer/ceramic reinforced biodegradable membranes for periodontal regeneration applications[J]. Mater Sci Eng C Mater Biol Appl, 2016,64:148-156.
[25] Bottino MC, Arthur RA, Waeiss RA , et al. Biodegradable nanofibrous drug delivery systems: effects of metronidazole and ciprofloxacin on periodontopathogens and commensal oral bacteria[J]. Clin Oral Investig, 2014,18(9):2151-2158.
[26] Monteiro N, Yelick PC . Advances and perspectives in tooth tissue engineering[J]. J Tissue Eng Regen Med, 2017,11(9):2443-2461.
[27] Chen X, Liu Y, Miao L , et al. Controlled release of recombinant human cementum protein 1 from electrospun multiphasic scaffold for cementum regeneration[J]. Int J Nanomedicine, 2016,11:3145-3158.
[28] Xie Q, Jia LN, Xu HY , et al. Fabrication of core-shell PEI/pBMP2-PLGA electrospun scaffold for gene delivery to periodontal ligament stem cells[J]. Stem Cells Int, 2016,2016:5385137.
[29] Monteiro N, Martins A, Pires R , et al. Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering[J]. Biomaterials Sci, 2014,2(9):1195-1209.
[30] El-Fiqi A, Kim JH, Kim HW . Osteoinductive fibrous scaffolds of biopolymer/mesoporous bioactive glass nanocarriers with excellent bioactivity and long-term delivery of osteogenic drug[J]. ACS Appl Mater Interfaces, 2015,7(2):1140-1152.
[31] Jin G, He R, Sha B , et al. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering[J]. Mater Sci Eng C Mater Biol Appl, 2018,92:995-1005.
[32] Batool F, Strub M, Petit C , et al. Periodontal tissues, maxillary jaw bone, and tooth regeneration approaches: from animal models analyses to clinical applications[J]. Nanomaterials (Basel), 2018,8(5). doi: 10.3390/nano8050337.
[33] Costa PF, Vaquette C, Zhang Q , et al. Advanced tissue engineering scaffold design for regeneration of the complex hierarchical periodontal structure[J]. J Clin Periodontol, 2014,41(3):283-294.
[34] Zafar M, Najeeb S, Khurshid Z , et al. Potential of electrospun nanofibers for biomedical and dental applications[J]. Materials (Basel), 2016,9(2). doi: 10.3390/ma9020073.
[35] de Jong T, Bakker AD, Everts V , et al. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration[J]. J Periodontal Res, 2017,52(6):965-974.
[36] Ren S, Yao Y, Zhang H , et al. Aligned fibers fabricated by near-field electrospinning influence the orien-tation and differentiation of hPDLSCs for perio-dontal regeneration[J]. J Biomed Nanotechnol, 2017,13(12):1725-1734.
[1] 张琳琳,杜毅. 畸形舌侧沟的治疗进展[J]. 国际口腔医学杂志, 2020, 47(4): 458-462.
[2] 刘琳,周婕妤,吴亚菲,赵蕾. 益生菌生态调节在牙周病防治中的应用[J]. 国际口腔医学杂志, 2020, 47(2): 131-137.
[3] 胡竹林,赵诣,李茵. 口腔龈沟液生物标志物的检测分析现状及临床应用前景展望[J]. 国际口腔医学杂志, 2019, 46(3): 308-315.
[4] 郭淑娟, 刘倩, 丁一. 牙周病和植体周病国际新分类简介[J]. 国际口腔医学杂志, 2019, 46(2): 125-134.
[5] 闫凯娴,李纾. 非牙周病性龈病损[J]. 国际口腔医学杂志, 2019, 46(2): 177-185.
[6] 董正谋,刘锐,刘鲁川,温秀杰. 种子细胞在牙周组织再生治疗中的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 48-54.
[7] 叶畅畅, 赵蕾, 王冬青, 王晓丽, 王海燕, 游梦, 黄萍, 吴亚菲. 妊娠期牙周疾病的防治策略[J]. 国际口腔医学杂志, 2018, 45(5): 501-508.
[8] 李一涵, 潘兰兰. 牙周病与阿尔兹海默症的关系[J]. 国际口腔医学杂志, 2018, 45(3): 335-339.
[9] 关巍, 汪昌宁. 脱细胞异体真皮基质在牙周病学中的应用[J]. 国际口腔医学杂志, 2017, 44(6): 669-673.
[10] 苗棣, 吴亚菲. 齿垢密螺旋体糜蛋白酶样蛋白酶复合物及其致病作用[J]. 国际口腔医学杂志, 2017, 44(6): 674-678.
[11] 梁静, 王凯, 吴家媛. CD24在口腔医学中的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 608-613.
[12] 刘双, 李纾. 表观遗传学及其调控与牙周病[J]. 国际口腔医学杂志, 2017, 44(5): 523-527.
[13] 谢成佳, 葛少华. 牙骨质撕裂的诊治进展[J]. 国际口腔医学杂志, 2017, 44(3): 315-319.
[14] 吕娇 赵文峰. 牙周病非手术治疗的研究进展[J]. 国际口腔医学杂志, 2016, 43(5): 594-598.
[15] 李娜,曹卫彬. 牙周病修复治疗的研究进展[J]. 国际口腔医学杂志, 2015, 42(5): 564-567.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .