国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (4): 444-448.doi: 10.7518/gjkq.2018.04.013

• 综述 • 上一篇    下一篇

巨噬细胞在骨组织修复中的研究进展

朱宸佑, 魏诗敏, 汪媛婧, 伍颖颖   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院种植科 成都 610041
  • 收稿日期:2017-11-20 修回日期:2018-04-10 出版日期:2018-07-02 发布日期:2018-07-02
  • 通讯作者: 伍颖颖,副教授,博士,Email:yywdentist@163.com
  • 作者简介:朱宸佑,学士,Email:tn00992786@qq.com
  • 基金资助:
    四川大学优秀青年学者科研基金(2017SCU04A21); 四川省科技厅苗子工程(2018RZ0088); 四川大学大学生创新创业训练计划(C2018103082)

Research progress on macrophage in bone tissue repair

Zhu Chenyou, Wei Shimin, Wang Yuanjing, Wu Yingying.   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-11-20 Revised:2018-04-10 Online:2018-07-02 Published:2018-07-02
  • Supported by:
    This study was supported by Program for Sichuan University Excellent Young Scholars Research Fund (2017SCU04A21), Sichuan Provincial Department of Science and Technology Talent Project (2018RZ0088), and Sichuan University Innovation and Entrepreneurship Training Program under Grants (C2018103082).

摘要: 免疫系统是人体的一道重要防线,参与其中的细胞包括B细胞、T细胞、DC细胞、巨噬细胞等,其中的巨噬细胞在组织损伤、肿瘤、骨改建等过程中起到尤为重要的作用,随着时间的推移,对于巨噬细胞的了解更为深入,但巨噬细胞与生物材料之间的应答仍有很多机理尚未明了。因此本综述主要探讨生物材料与巨噬细胞之间的应答,展望其潜在应用,为基础及临床研究提供新思路。

关键词: 巨噬细胞, 骨组织修复, 牙种植, 引导性骨再生

Abstract: The immune system is an important barrier for defense in the human body. This system includes B cells, T cells, dendritic cells (DC), and macrophages, which play a pivotal role in tissue injury, tumor, and bone remodeling. The understanding of macrophages has improved in the past years, but numerous mechanisms between macrophages and biomaterials remain largely unknown. Thus, the present study discusses the response between macrophages and biomaterials and predicts their potential application to provide new ideas for basic and clinical research.

Key words: macrophage, bone repair, dental implant, guided bone regeneration

中图分类号: 

  • Q813
[1] Anderson JM, Rodriguez A, Chang DT.Foreign body reaction to biomaterials[J]. Semin Immunol, 2008, 20(2): 86-100.
[2] Trindade R, Albrektsson T, Tengvall P, et al.Foreign body reaction to biomaterials: on mechanisms for buildup and breakdown of osseointegration[J]. Clin Implant Dent Relat Res, 2016, 18(1): 192-203.
[3] Sheikh Z, Brooks PJ, Barzilay O, et al.Macrophages, foreign body giant cells and their response to im-plantable biomaterials[J]. Materials (Basel), 2015, 8(9): 5671-5701.
[4] Klopfleisch R, Jung F.The pathology of the foreign body reaction against biomaterials[J]. J Biomed Mater Res A, 2017, 105(3): 927-940.
[5] Schmidt-Bleek K, Petersen A, Dienelt A, et al.Ini-tiation and early control of tissue regeneration—bone healing as a model system for tissue regenera-tion[J]. Expert Opin Biol Ther, 2014, 14(2): 247-259.
[6] Ai-Aql ZS, Alagl AS, Graves DT, et al.Molecular mechanisms controlling bone formation during frac-ture healing and distraction osteogenesis[J]. J Dent Res, 2008, 87(2): 107-118.
[7] Matsuno T, Nakamura T, Kuremoto K, et al.Deve-lopment of beta-tricalcium phosphate/collagen sponge composite for bone regeneration[J]. Dent Mater J, 2006, 25(1): 138-144.
[8] Geiger M, Li RH, Friess W.Collagen sponges for bone regeneration with rhBMP-2[J]. Adv Drug Deliv Rev, 2003, 55(12): 1613-1629.
[9] Chu C, Deng J, Xiang L, et al.Evaluation of epigal-locatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016, 67: 386-394.
[10] Chu C, Deng J, Man Y, et al.Evaluation of nanohy-droxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017, 78: 258-264.
[11] Chang MK, Raggatt LJ, Alexander KA, et al.Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo[J]. J Immunol, 2008, 181(2): 1232-1244.
[12] Dimitriou R, Jones E, McGonagle D, et al. Bone regeneration: current concepts and future directions[J]. BMC Med, 2011, 9: 66.
[13] Xing Z, Lu C, Hu D, et al.Multiple roles for CCR2 during fracture healing[J]. Dis Model Mech, 2010, 3(7/8): 451-458.
[14] Claes L, Recknagel S, Ignatius A.Fracture healing under healthy and inflammatory conditions[J]. Nat Rev Rheumatol, 2012, 8(3): 133-143.
[15] Einhorn TA.The cell and molecular biology of frac-ture healing[J]. Clin Orthop Relat Res, 1998(355 Suppl): S7-S21.
[16] Rifas L.T-cell cytokine induction of BMP-2 regula-tes human mesenchymal stromal cell differentiation and mineralization[J]. J Cell Biochem, 2006, 98(4): 706-714.
[17] Sridharan R, Cameron AR, Kelly DJ, et al.Bioma-terial based modulation of macrophage polarization: a review and suggested design principles[J]. Mater Today (Kidlington), 2015, 18(6): 313-325.
[18] Das A, Sinha M, Datta S, et al.Monocyte and macro-phage plasticity in tissue repair and regeneration[J]. Am J Pathol, 2015, 185(10): 2596-2606.
[19] Miron RJ, Bosshardt DD.OsteoMacs: key players around bone biomaterials[J]. Biomaterials, 2016, 82: 1-19.
[20] Martinez FO, Sica A, Mantovani A, et al.Macrophage activation and polarization[J]. Front Biosci, 2008, 13: 453-461.
[21] Godwin JW, Pinto AR, Rosenthal NA.Macrophages are required for adult salamander limb regeneration[J]. Proc Natl Acad Sci USA, 2013, 110(23): 9415-9420.
[22] Kigerl KA, Gensel JC, Ankeny DP, et al.Identifica-tion of two distinct macrophage subsets with diver-gent effects causing either neurotoxicity or regenera-tion in the injured mouse spinal cord[J]. J Neurosci, 2009, 29(43): 13435-13444.
[23] Sinder BP, Pettit AR, McCauley LK. Macrophages: their emerging roles in bone[J]. J Bone Miner Res, 2015, 30(12): 2140-2149.
[24] Shi M, Wang C, Wang Y, et al.Deproteinized bo-vine bone matrix induces osteoblast differentiation via macrophage polarization[J]. J Biomed Mater Res A, 2018, 106(5): 1236-1246.
[25] Chen Z, Klein T, Murray RZ, et al.Osteoimmunomo-dulation for the development of advanced bone bio-materials[J]. Mater Today (Kidlington), 2016, 19(6): 304-321.
[26] Chu C, Deng J, Sun X, et al.Collagen membrane and immune response in guided bone regeneration: recent progress and perspectives[J]. Tissue Eng Part B Rev, 2017, 23(5): 421-435.
[27] Batoon L, Millard SM, Raggatt LJ, et al.Osteomacs and bone regeneration[J]. Curr Osteoporos Rep, 2017, 15(4): 385-395.
[28] Parfitt AM.The bone remodeling compartment: a circulatory function for bone lining cells[J]. J Bone Miner Res, 2001, 16(9): 1583-1585.
[29] Henson PM, Hume DA.Apoptotic cell removal in development and tissue homeostasis[J]. Trends Im-munol, 2006, 27(5): 244-250.
[30] Sadtler K, Estrellas K, Allen BW, et al.Developing a pro-regenerative biomaterial scaffold micro-environment requires T helper 2 cells[J]. Science, 2016, 352(6283): 366-370.
[31] Sicari BM, Rubin JP, Dearth CL, et al.An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss[J]. Sci Transl Med, 2014, 6(234): 234-258.
[32] Chen Z, Bachhuka A, Han S, et al.Tuning chemistry and topography of nanoengineered surfaces to mani-pulate immune response for bone regeneration app-lications[J]. ACS Nano, 2017, 11(5): 4494-4506.
[33] Elgali I, Turri A, Xia W, et al.Guided bone re-generation using resorbable membrane and different bone substitutes: early histological and molecular events[J]. Acta Biomater, 2016, 29: 409-423.
[34] Spiller KL, Nassiri S, Witherel CE, et al.Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and en-hance vascularization of bone scaffolds[J]. Bioma-terials, 2015, 37: 194-207.
[35] Mathew A, Vaquette C, Hashimi S, et al.Antimicro-bial and immunomodulatory surface-functionalized electrospun membranes for bone regeneration[J]. Adv Healthc Mater, 2017, 6(10). doi: 10.1002/adhm. 201601345.
[1] 赵玉洁,管晓燕,李小兰,陈琦君,王倩,刘建国. 巨噬细胞极化参与正畸牙移动的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 478-483.
[2] 刘晔,洪润丹,王志国,刘涵云,孟琛达,王茹,徐全臣. 人单核细胞和外周血单个核细胞衍生的巨噬细胞极化特性的比较[J]. 国际口腔医学杂志, 2020, 47(3): 286-292.
[3] 于婉琦,周延民,赵静辉. 口腔种植体新材料的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 488-496.
[4] 王美洁,谭欣,赵雨薇,于海洋. 即刻种植和传统种植对术后疼痛影响的对比研究[J]. 国际口腔医学杂志, 2019, 46(3): 292-296.
[5] 曹焜,李家锋,孙玉华,鲍强,卢秋宁,唐巍. 下颌下窝的锥形束CT影像分析[J]. 国际口腔医学杂志, 2019, 46(2): 209-212.
[6] 向琳,陈晖璐,袁影,张勤,辛娜,宫苹. 降钙素基因相关肽对种植体周围神经、血管再生及骨结合的作用[J]. 国际口腔医学杂志, 2018, 45(5): 509-515.
[7] 米梦梦,夏海斌,王敏. 釉基质蛋白衍生物在口腔种植中的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 522-526.
[8] 林冬佳, 彭志翔, 高燕. 粪肠球菌与巨噬细胞相互作用机制的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 433-438.
[9] 徐迅, 黄建生, 甘泽坤, 罗震. 上颌第一磨牙区腭侧骨板的锥形束CT测量结果及其临床意义[J]. 国际口腔医学杂志, 2017, 44(6): 686-690.
[10] 黄月华, 唐晓琳. 单核-吞噬细胞系统与牙周炎关系的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 528-532.
[11] 潘佳慧, 唐秋玲, 李格格, 侯玉帛, 于维先. 巨噬细胞极化在牙龈卟啉单胞菌促进牙周炎发生发展中的作用[J]. 国际口腔医学杂志, 2017, 44(5): 533-537.
[12] 廖军,徐普. 富血小板血纤蛋白在牙槽嵴位点保存中的应用[J]. 国际口腔医学杂志, 2016, 43(2): 216-219.
[13] 郑文龙 邹多宏 陈乔尔. 巨噬细胞在血管再生和组织工程中的调控作用[J]. 国际口腔医学杂志, 2016, 43(1): 108-.
[14] 苟敏 蔡潇潇. 种植体—基台微间隙对种植体颈部周围骨的影响[J]. 国际口腔医学杂志, 2015, 42(6): 733-738.
[15] 满毅 吴庆庆 龚婷 宫苹. 美学区种植外科修复治疗流程新方案[J]. 国际口腔医学杂志, 2015, 42(4): 373-383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .