国际口腔医学杂志 ›› 2017, Vol. 44 ›› Issue (4): 459-465.doi: 10.7518/gjkq.2017.04.018

• 综述 • 上一篇    下一篇

Wnt和Notch通路在老龄个体骨髓间充质干细胞成骨中的调控

张建康, 卫俊俊, 唐曌隆, 余云波, 敬伟   

  1. 口腔疾病研究国家重点实验室,国家口腔疾病临床研究中心,四川大学华西口腔医院口腔颌面外科 成都 610041
  • 收稿日期:2016-12-22 修回日期:2017-02-09 出版日期:2017-07-01 发布日期:2017-07-01
  • 通讯作者: 敬伟,副教授,博士,Email:jingwei@scu.edu.cn
  • 作者简介:张建康,硕士,Email:18037501368@163.com
  • 基金资助:
    国家自然科学基金(81270421,81571366)

Regulation of Wnt and Notch signaling pathways in the osteogenic differentiation of bone marrow-derived mesen-chymal stem cells from aged individuals

Zhang Jiankang, Wei Junjun, Tang Zhaolong, Yu Yunbo, Jing Wei   

  1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2016-12-22 Revised:2017-02-09 Online:2017-07-01 Published:2017-07-01
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81270421, 81571366).

摘要: 社会老龄化的加剧使老年个体骨损伤修复问题愈发突出,骨髓间充质干细胞(BMSC)是一种与骨代谢再生密切相关的骨髓细胞,其生物学特性(形态、表面特征、细胞周期、端粒酶以及细胞内活性氧簇水平等)以及增殖分化能力在生物体年龄影响下均发生了改变,成骨能力下降,影响了骨损伤的修复速度和质量。探索其中分子机制对改善老龄个体骨损伤康复有至关重要作用。参与调控的信号中,Wnt和Notch近年日益受到关注,二者对老龄BMSC成骨的调控有交互作用。老龄机体的氧化应激反应增加而生长因子生成减少,Wnt通路的转录因子β-catenin与叉头家族转录因子的亲和力增加,不再与T细胞因子和淋巴增强因子结合,故BMSC成骨减弱。同时老龄个体骨髓中BMSC数量减少,Notch抑制BMSC成骨来维持祖细胞池中BMSC的数量。Wnt和Notch之间还存在相互作用,如Notch过表达能够削弱Wnt的影响等。此外,BMP-Smad转录因子活性下降,Hedgehog信号通路下调,亦影响着BMSC的成骨分化。本文对老龄个体BMSC生物学性能变化及其成骨分化过程中信号通路的调控作用进行综述,为老龄个体骨相关性疾病的治疗提供新思路。

关键词: 信号通路, 老龄, 骨髓间充质干细胞, 成骨

Abstract: The impaired bone healing process in aged individuals is a common clinical problem. Bone marrow-derived mesenchymal stem cells(BMSCs), a group of pluripotent stem cells located in the bone marrow, are functional cells of new bone formation and bone metabolism. Its biological characteristics(including cell morphology, surface features, cell cycle, and level of reactive oxygen species) and proliferation and differentiation ability are varied with age, which directly affects the bone healing speed and quality at the bone injury site. Signaling pathways play a crucial role in the osteogenic differentiation of BMSCs from aged individuals. Wnt and Notch signaling pathways have been widely reported and have attracted increasing attention from the scholars in recent years. The changes of oxidative stress and growthfactors among aged individuals inhibit β-catenin activity directly by preventing β-catenin and binding its target site T cell factor and lymph enhancement factor instead of the binding fork head transcription factor and repress target gene expressions. Notch signaling pathway represses the differentiation and promotes the proliferation of BMSCs to maintain the number of BMSCs in bone marrow. The cross talk is between Notch and Wnt/β-catenin signaling pathways. Notch1 overexpression inhibits osteoblastogenesis by suppressing Wnt/β-catenin. It also plays an important role in the osteogenic differentia-tion of BMSCs from aged individuals. Moreover, the reactive oxygen species(ROS) level down-regulates bone morpho-genetic protein(BMP)-Smads and Hedgehog. Several other pathways also participate in the regulation process. This review summarizes the mechanism that Wnt/β-catenin and Notch signaling pathways regulate the osteogenic differentiation of BMSCs from aged individuals. This review may provide a new approach for the treatment of bone-related diseases in the senior population.

Key words: signaling pathway, aged, bone marrow-derived mesenchymal stem cell, osteogenesis

中图分类号: 

  • Q257
[1] Ross CL, Siriwardane M, Almeida-Porada G, et al. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentia-tion[J]. Stem Cell Res, 2015, 15(1):96-108.
[2] Lynch K, Pei M. Age associated communication between cells and matrix: a potential impact on stem cell-based tissue regeneration strategies[J]. Organo-genesis, 2014, 10(3):289-298.
[3] Yu JM, Wu X, Gimble JM, et al. Age-related chan-ges in mesenchymal stem cells derived from rhesus macaque bone marrow[J]. Aging Cell, 2011, 10(1): 66-79.
[4] Stolzing A, Jones E, McGonagle D, et al. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies[J]. Mech Ageing Dev, 2008, 129(3):163-173.
[5] Dantzer B, Fletcher QE. Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones[J]. Exp Gerontol, 2015, 71:38-47.
[6] Oh J, Lee YD, Wagers AJ. Stem cell aging: mechan-isms, regulators and therapeutic opportunities[J]. Nat Med, 2014, 20(8):870-880.
[7] Efimenko AY, Kochegura TN, Akopyan ZA, et al. Autologous stem cell therapy: how aging and chronic diseases affect stem and progenitor cells[J]. Biores Open Access, 2015, 4(1):26-38.
[8] Baxter MA, Wynn RF, Jowitt SN, et al. Study of telomere length reveals rapid aging of human mar-row stromal cells following in vitro expansion[J]. Stem Cells, 2004, 22(5):675-682.
[9] 付欣. 初步探讨自然衰老小鼠骨髓间充质干细胞生物学行为及β-catenin对其分化功能的影响[D]. 西安: 第四军医大学, 2013.
Fu X. Research on the biological function of BMMSCs from natural aging mice and the effects on the dif-ferentiation functions of β-catenin[D]. Xi’an: Fourth Military Medical University, 2013.
[10] Xiao JJ, Zhao WJ, Zhang XT, et al. Bergapten promotes bone marrow stromal cell differentiation into osteoblasts in vitro and in vivo [J]. Mol Cell Biochem, 2015, 409(1/2):113-122.
[11] Zhang W, Ou G, Hamrick M, et al. Age-related changes in the osteogenic differentiation potential of mouse bone marrow stromal cells[J]. J Bone Miner Res, 2008, 23(7):1118-1128.
[12] Leucht P, Jiang J, Cheng D, et al. Wnt3a reestab-lishes osteogenic capacity to bone grafts from aged animals[J]. J Bone Joint Surg Am, 2013, 95(14): 1278-1288.
[13] Saito-Diaz K, Chen TW, Wang X, et al. The way Wnt works: components and mechanism[J]. Growth Factors, 2013, 31(1):1-31.
[14] Niehrs C. The complex world of WNT receptor signalling[J]. Nat Rev Mol Cell Biol, 2012, 13(12): 767-779.
[15] Yu J, Virshup D. Updating the Wnt pathways[J]. Biosci Rep, 2014, 34(5):593-607.
[16] Fujimaki S, Wakabayashi T, Takemasa T, et al. The regulation of stem cell aging by Wnt signaling[J]. Histol Histopathol, 2015, 30(12):1411-1430.
[17] Acebron SP, Karaulanov E, Berger BS, et al. Mitotic Wnt signaling promotes protein stabilization and re- gulates cell size[J]. Mol Cell, 2014, 54(4):663-674.
[18] Vinyoles M, Del Valle-Pérez B, Curto J, et al. Multi-vesicular GSK3 sequestration upon Wnt signaling is controlled by p120-catenin/cadherin interaction with LRP5/6[J]. Mol Cell, 2014, 53(3):444-457.
[19] Shahnazari M, Yao W, Corr M, et al. Targeting the Wnt signaling pathway to augment bone formation [J]. Curr Osteoporos Rep, 2008, 6(4):142-148.
[20] Milovanovic P, Adamu U, Simon MJ, et al. Age- and sex-specific bone structure patterns portend bone fragility in radii and tibiae in relation to osteodensi-tometry: ahigh-resolution peripheral quantitative computed tomography study in 385 individuals[J]. J Gerontol A Biol Sci Med Sci, 2015, 70(10):1269- 1275.
[21] Ng AH, Baht GS, Alman BA, et al. Bone marrow stress decreases osteogenic progenitors[J]. Calcif Tissue Int, 2015, 97(5):476-486.
[22] Iyer S, Ambrogini E, Bartell SM, et al. FOXOs attenuate bone formation by suppressing Wnt signa-ling[J]. J Clin Invest, 2013, 123(8):3409-3419.
[23] Georgiou KR, Hui SK, Xian CJ. Regulatory path-ways associated with bone loss and bone marrow adiposity caused by aging, chemotherapy, glucocor-ticoid therapy and radiotherapy[J]. Am J Stem Cell, 2012(3):205-224.
[24] Almeida M, Han L, Martin-Millan M, et al. Oxida-tive stress antagonizes Wnt signaling in osteoblast precursors by diverting beta-catenin from T cell factor- to forkhead box O-mediated transcription[J]. J Biol Chem, 2007, 282(37):27298-27305.
[25] Guan H, Tan P, Xie L, et al. FOXO1 inhibits osteo-sarcoma oncogenesis via Wnt/β-catenin pathway suppression[J]. Oncogenesis, 2015, 4(9):e166.
[26] Schwanbeck R. The role of epigenetic mechanisms in Notch signaling during development[J]. J Cell Physiol, 2015, 230(5):969-981.
[27] Perdigoto CN, Bardin AJ. Sending the right signal: Notch and stem cells[J]. Biochim Biophys Acta, 2013, 1830(2):2307-2322.
[28] Ables JL, Decarolis NA, Johnson MA, et al. Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells[J]. J Neurosci, 2010, 30(31): 10484-10492.
[29] Watanabe K, Ikeda K. Osteoblast differentiation and bone formation[J]. Nippon Rinsho, 2009, 67(5):879- 886.
[30] Hilton MJ, Tu X, Wu X, et al. Notch signaling main-tains bone marrow mesenchymal progenitors by sup-pressing osteoblast differentiation[J]. Nat Med, 2008, 14(3):306-314.
[31] Li JL, Harris AL. Crosstalk of VEGF and Notch pathways in tumour angiogenesis: therapeutic im-plications[J]. Front Biosci(Landmark Ed), 2009, 14: 3094-3110.
[32] Zanotti S, Canalis E. Notch and the skeleton[J]. Mol Cell Biol, 2010, 30(4):886-896.
[33] Mead TJ, Yutzey KE. Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development[J]. Proc Natl Acad Sci USA, 2009, 106(34):14420-14425.
[34] Collu GM, Hidalgo-Sastre A, Brennan K. Wnt-Notch signalling crosstalk in development and disease[J]. Cell Mol Life Sci, 2014, 71(18):3553-3567.
[35] Caliceti C, Nigro P, Rizzo P, et al. ROS, Notch, and Wnt signaling pathways: crosstalk between three major regulators of cardiovascular biology[J]. Biomed Res Int, 2014, 2014:318714.
[36] Deregowski V, Gazzerro E, Priest L, et al. Notch 1 overexpression inhibits osteoblastogenesis by sup-pressing Wnt/beta-catenin but not bone morphogene-tic protein signaling[J]. J Biol Chem, 2006, 281(10): 6203-6210.
[37] Pawłowska E, Wójcik KA, Synowiec E, et al. Ex-pression of RUNX2 and its signaling partners TCF7, FGFR1/2 in cleidocranial dysplasia[J]. Acta Biochim Pol, 2015, 62(1):123-126.
[38] Collu GM, Hidalgo-Sastre A, Acar A, et al. Dishe-velled limits Notch signalling through inhibition of CSL[J]. Development, 2012, 139(23):4405-4415.
[39] Kazmers NH, McKenzie JA, Shen TS, et al. Hedge-hog signaling mediates woven bone formation and vascularization during stress fracture healing[J]. Bone, 2015, 81:524-532.
[40] Yang J, Andre P, Ye L, et al. The Hedgehog signal-ling pathway in bone formation[J]. Int J Oral Sci, 2015, 7(2):73-79.
[41] James AW. Review of signaling pathways gover-ning MSC osteogenic and adipogenic differentia-tion[J]. Scientifica, 2013, 2013:1-17.
[42] Tang Z, Wang Z, Qing F, et al. Bone morphogenetic protein Smads signaling in mesenchymal stem cells affected by osteoinductive calcium phosphate cera-mics[J]. J Biomed Mater Res A, 2015, 103(3):1001- 1010.
[43] Sharma AK, Taneja G, Khanna D, et al. Reactive oxygen species: friend or foe[J]. RSC Adv, 2015, 5 (71):57267-57276.
[44] Xie Q, Lan G, Zhou Y, et al. Strategy to enhance the anticancer efficacy of X-ray radiotherapy in me-lanoma cells by platinum complexes, the role of ROS-mediated signaling pathways[J]. Cancer Lett, 2014, 354(1):58-67.
[45] 李丽莉. BMP-Smad信号通路的调节及其在成骨分化中的作用[D]. 济南: 山东大学, 2013.
Li LL. Regulation of BMP-Smad signaling and its function in osteogenic differentiation[D]. Jinan: Shandong University, 2013.
[46] Cai JQ, Huang YZ, Chen XH, et al. Sonic Hedgehog enhances the proliferation and osteogenic differentia-tion of bone marrow-derived mesenchymal stem cells[J]. Cell Biol Int, 2012, 36(4):349-355.
[47] Regard JB, Malhotra D, Gvozdenovic-Jeremic J, et al. Activation of Hedgehog signaling by loss of GNAS causes heterotopic ossification[J]. Nat Med, 2013, 19(11):1505-1512.
[48] Kim WK, Meliton V, Bourquard N, et al. Hedgehog signaling and osteogenic differentiation in multi-potent bone marrow stromal cells are inhibited by oxidative stress[J]. J Cell Biochem, 2010, 111(5): 1199-1209.
[1] 王欢,刘洋,戚孟春,李静怡,刘梦楠,孙红. 微弧氧化技术制备钛基种植体表面涂层的研究进展[J]. 国际口腔医学杂志, 2020, 47(4): 439-444.
[2] 杨叶青,陈明,吴补领. 环状非编码RNA在间充质干细胞成骨向分化中作用的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 257-262.
[3] 刘俊圻,陈艺尹,杨文宾. RNA腺嘌呤6-甲基化修饰调控骨髓间充质干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(3): 263-269.
[4] 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285.
[5] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[6] 李寒月,夏露露,华先明. 牙周加速成骨正畸临床应用效果的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 206-211.
[7] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[8] 何优雅,季彤. SMOi>基因突变在成釉细胞瘤中的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 63-67.
[9] 朱俊瑾,周佳琦,伍颖颖. 哺乳动物雷帕霉素靶蛋白复合物1介导的自噬对骨代谢的调控[J]. 国际口腔医学杂志, 2020, 47(1): 84-89.
[10] 卢可心,张迪亚,吴燕岷. 蛋白酶激活受体在牙周组织细胞中相关作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 657-662.
[11] 周婷茹,李永生. 牙髓干细胞成骨微环境的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 675-679.
[12] 梅宏翔,张懿丹,张城浩,刘恩言,陈昊,赵志河,廖文. 表没食子儿茶素没食子酸酯在干细胞增殖及成骨分化作用中的研究现状[J]. 国际口腔医学杂志, 2019, 46(4): 431-436.
[13] 岳史婧,卿艺凡,林洁,韩波. 脾酪氨酸激酶及其相关信号通路对头颈部肿瘤发生与发展的影响及作用机制[J]. 国际口腔医学杂志, 2019, 46(4): 442-449.
[14] 王小萌,王晓,史册,孙宏晨,黄洋. 骨形态发生蛋白信号通路及其交叉对话对下颌骨发育的影响[J]. 国际口腔医学杂志, 2019, 46(3): 258-262.
[15] 张歆缘,王斌,于晖,朱丽文,向琳. Hippo信号通路在骨代谢中的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 263-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨锦波. 嵌合体防龋疫苗的研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 王昆润. 下颔骨成形术用网状钛板固定植骨块[J]. 国际口腔医学杂志, 1999, 26(04): .
[6] 汪月月,郭莉莉. 口腔机能与老化—痴呆危险因素流行病学研究[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 丁刚. 应用硬组织代用品种植体行丰颏术[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 戴青. 口腔念珠菌病的新分类[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 王金涛 刘美娟 孙宏晨 欧阳喈. 牙槽嵴牵张成骨[J]. 国际口腔医学杂志, 2004, 31(02): 146 -148 .
[10] 蔡霞,李成章. 前列腺素E_2受体EP亚型在牙周炎发病机制中的作用[J]. 国际口腔医学杂志, 2005, 32(06): 461 -462 .