国际口腔医学杂志 ›› 2016, Vol. 43 ›› Issue (2): 223-227.doi: 10.7518/gjkq.2016.02.024

• 综述 • 上一篇    下一篇

口腔细菌黏附机制的研究进展

郑赛男,蒋丽,李伟   

  1. 口腔疾病研究国家重点实验室 华西口腔医院(四川大学) 成都 610041
  • 收稿日期:2015-06-01 修回日期:2015-12-16 出版日期:2016-03-01 发布日期:2016-03-01
  • 通讯作者: 李伟,教授,博士,Email:leewei@scu.edu.cn
  • 作者简介:郑赛男,硕士,Email:584365144@qq.com
  • 基金资助:
    国家自然科学基金(31200720);教育部博士点新教师基金(20120181120009)

Research progress on oral bacterial adhesion mechanism

Zheng Sainan, Jiang Li, Li Wei   

  1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
  • Received:2015-06-01 Revised:2015-12-16 Online:2016-03-01 Published:2016-03-01

摘要: 口腔细菌黏附的机制是口腔微生物学和生态学的研究热点之一,近年来,随着分子生物研究水平的提高,口腔细菌黏附机制的研究在分子水平上有了较大的进展。细菌表面的黏附蛋白和受体以及菌毛和胞外多糖都参与细菌间的共聚及细菌对牙表面的黏附。材料表面的获得性薄膜、粗糙度、表面电荷和疏水性等特性也能影响细菌的定植和黏附。本文就细菌和材料两个方面对口腔细菌黏附的机制及控制细菌黏附的方法作一综述。

关键词: 细菌黏附, 黏附蛋白, 受体, 菌毛, 唾液薄膜, 细菌黏附, 黏附蛋白, 受体, 菌毛, 唾液薄膜

Abstract: Oral bacterial adhesion mechanism is one of the focus studies in the research on oral microbiology and ecology. In recent years, with the improvement of molecular biology, the study of mechanism of oral bacteria adhesion has exhibited considerable progress at the molecular level. The adhesion protein-receptors, fimbriae, and exopolysaccharides on bacterial surface are responsible for the coaggregation of bacteria and adhesion of bacteria to teeth. The acquired pellicle on the material surface and several characteristics of the material, such as roughness, surface charge, and hydrophobicity, can affect bacterial colonization and adhesion. In this paper, the mechanism of oral bacteria adhesion from both bacteria and material, as well as the methods to control bacterial adhesion, are reviewed.

Key words: bacteria adhesion, adhesion protein, receptor, fimbria, salivary pellicle, bacteria adhesion, adhesion protein, receptor, fimbria, salivary pellicle

中图分类号: 

  • R 780.2
[1] Flemming HC, Wingender J. The biofilm matrix[J]. Nat Rev Microbiol, 2010, 8(9):623-633.
[2] Kolenbrander PE, Palmer RJ, Rickard AH, et al. Bacterial interactions and successions during plaque development[J]. Periodontol 2000, 2006, 42:47-79.
[3] He X, Hu W, Kaplan CW, et al. Adherence to streptococci facilitates Fusobacterium nucleatum integration into an oral microbial community[J]. Microb Ecol, 2012, 63(3):532-542.
[4] Kuboniwa M, Lamont RJ. Subgingival biofilm formation[J]. Periodontol 2000, 2010, 52(1):38-52.
[5] Ramboarina S, Garnett JA, Zhou M, et al. Structural insights into serine-rich fimbriae from Gram-positive bacteria[J]. J Biol Chem, 2010, 285(42):32446-32457.
[6] Petersen HJ, Keane C, Jenkinson HF, et al. Human platelets recognize a novel surface protein, PadA, on Streptococcus gordonii through a unique interaction involving fibrinogen receptor GPⅡbⅢa[J]. Infect Immun, 2010, 78(1):413-422.
[7] Liang X, Chen YY, Ruiz T, et al. New cell surface protein involved in biofilm formation by Streptococcus parasanguinis[J]. Infect Immun, 2011, 79(8):3239-3248.
[8] Nikitkova AE, Haase EM, Scannapieco FA. Effect of starch and amylase on the expression of amylasebinding protein A in Streptococcus gordonii[J]. Mol Oral Microbiol, 2012, 27(4):284-294.
[9] Biswas I, Drake L, Biswas S. Regulation of gbpC expression in Streptococcus mutans[J]. J Bacteriol, 2007, 189(18):6521-6531.
[10] Sullan RM, Li JK, Crowley PJ, et al. Binding forces of Streptococcus mutans P1 adhesin[J]. ACS Nano, 2015, 9(2):1448-1460.
[11] Brady LJ, Maddocks SE, Larson MR, et al. The changing faces of Streptococcus antigenⅠ/Ⅱ polypeptide family adhesins[J]. Mol Microbiol, 2010, 77(2):276-286.
[12] Nobbs AH, Lamont RJ, Jenkinson HF. Streptococcus adherence and colonization[J]. Microbiol Mol Biol Rev, 2009, 73(3):407-450.
[13] Nagata H, Iwasaki M, Maeda K, et al. Identification of the binding domain of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase for Porphyromonas gingivalis major fimbriae[J]. Infect Immun, 2009, 77(11):5130-5138.
[14] Okahashi N, Nakata M, Sakurai A, et al. Pili of oral Streptococcus sanguinis bind to fibronectin and contribute to cell adhesion[J]. Biochem Biophys Res Commun, 2010, 391(2):1192-1196.
[15] Okahashi N, Nakata M, Terao Y, et al. Pili of oral Streptococcus sanguinis bind to salivary amylase and promote the biofilm formation[J]. Microb Pathog, 2011, 50(3/4):148-154.
[16] Kuramitsu HK. Molecular genetic analysis of the virulence of oral bacterial pathogens: an historical perspective[J]. Crit Rev Oral Biol Med, 2003, 14(5):331-344.
[17] Gregoire S, Xiao J, Silva BB, et al. Role of glucosyltransferase B in interactions of Candida albicans with Streptococcus mutans and with an experimental pellicle on hydroxyapatite surfaces[J]. Appl Environ Microbiol, 2011, 77(18):6357-6367.
[18] Esberg A, L?fgren-Burstr?m A, Ohman U, et al. Host and bacterial phenotype variation in adhesion of Streptococcus mutans to matched human hosts[J]. Infect Immun, 2012, 80(11):3869-3879.
[19] Sethi A, Mohanty B, Ramasubbu N, et al. Structure of amylase-binding protein A of Streptococcus gordonii: a potential receptor for human salivary α-amylase enzyme[J]. Protein Sci, 2015, 24(6):1013-1018.
[20] Rüdiger SG, Dahlén G, Carlén A. Pellicle and early dental plaque in periodontitis patients before and after surgical pocket elimination[J]. Acta Odontol Scand, 2012, 70(6):615-621.
[21] Mei L, Busscher HJ, van der Mei HC, et al. Influence of surface roughness on streptococcal adhesion forces to composite resins[J]. Dent Mater, 2011, 27(8):770-778.
[22] Mei L, Ren Y, Busscher HJ, et al. Poisson analysis of streptococcal bond-strengthening on saliva-coated enamel[J]. J Dent Res, 2009, 88(9):841-845.
[23] Zamperini CA, Machado AL, Vergani CE, et al. Adherence in vitro of Candida albicans to plasma treated acrylic resin. Effect of plasma parameters, surface roughness and salivary pellicle[J]. Arch Oral Biol, 2010, 55(10):763-770.
[24] Sharma S, Lavender S, Woo J, et al. Nanoscale characterization of effect of L-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy[J]. Microbiology, 2014, 160(Pt 7):1466-1473.
[25] Truong VK, Rundell S, Lapovok R, et al. Effect of ultrafine-grained titanium surfaces on adhesion of bacteria[J]. Appl Microbiol Biotechnol, 2009, 83(5):925-937.
[26] Verran J, Jackson S, Coulthwaite L, et al. The effect of dentifrice abrasion on denture topography and the subsequent retention of microorganisms on abraded surfaces[J]. J Prosthet Dent, 2014, 112(6):1513-1522.
[27] Machado MC, Cheng D, Tarquinio KM, et al. Nanotechnology: pediatric applications[J]. Pediatr Res, 2010, 67(5):500-504.
[28] Katsikogianni MG, Missirlis YF. Interactions of bacteria with specific biomaterial surface chemistries under flow conditions[J]. Acta Biomater, 2010, 6(3):1107-1118.
[29] Hori K, Matsumoto S. Bacterial adhesion: From mechanism to control[J]. Biochem Eng J, 2010, 48(3):424-434.
[30] Li YV, Cathles LM. Retention of silica nanoparticles on calcium carbonate sands immersed in electrolyte solutions[J]. J Colloid Interface Sci, 2014, 436:1-8.
[31] Dong X, McCoy E, Zhang M, et al. Inhibitory effects of nisin-coated multi-walled carbon nanotube sheet on biofilm formation from Bacillus anthracis spores [J]. J Environ Sci(China), 2014, 26(12):2526-2534.
[32] Pimentel-Filho Nde J, Martins MC, Nogueira GB, et al. Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion[J]. Int J Food Microbiol, 2014, 190:1-8.
[33] Renner LD, Weibel DB. Physicochemical regulation of biofilm formation[J]. MRS Bull, 2011, 36(5):347-355.
[34] 刘音辰, 付东杰, 黄翠, 等. 含精氨酸的抗敏抛光膏对暴露牙本质表面变异链球菌黏附的影响[J]. 华西口腔医学杂志, 2013, 31(5):453-456.
Liu YC, Fu DJ, Huang C, et al. Effect of an argininecontaining polishing paste on Streptococcus mutans adhesion to exposed dentin surfaces[J]. West China J Stomatol, 2013, 31(5):453-456.
[35] Dorkhan M, Hall J, Uvdal P, et al. Crystalline anataserich titanium can reduce adherence of oral streptococci[J]. Biofouling, 2014, 30(6):751-759.
[36] Yumoto H, Hirota K, Hirao K, et al. Anti-inflammatory and protective effects of 2-methacryloyloxyethyl phosphorylcholine polymer on oral epithelial cells[J]. J Biomed Mater Res A, 2015, 103(2):555-563.
[37] 廖娟, 费伟, 郭俊, 等. 载银抗菌纯钛表面的制备及其抗菌性能的检测[J]. 华西口腔医学杂志, 2014, 32(3):303-305.
Liao J, Fei W, Guo J, et al. Preparation and antibacterial tests of silver-modified titanium surface[J]. West China J Stomatol, 2014, 32(3):303-305.
[38] 刘杰, 葛亚丽, 徐连立. 载银纳米二氧化钛树脂基托对变异链球菌和白色假丝酵母菌抗菌性的体外研究[J]. 华西口腔医学杂志, 2012, 30(2):201-205.
Liu J, Ge YL, Xu LL. Study of antibacterial effect of polymethyl methacrylate resin base containing Ag-TiO2 against Streptococcus mutans and Saccharomyces albicans in vitro[J]. West China J Stomatol, 2012, 30(2):201-205.
[39] Otsuka R, Imai S, Murata T, et al. Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation[J]. Microbiol Immunol, 2015, 59(1):28-36.
[40] 刘学军, 刘瑶, 梁晶, 等. 含碘的乳过氧化物酶-过氧化氢-硫氰化物系统对变异链球菌致龋性的影响[J]. 华西口腔医学杂志, 2014, 32(4):404-408. Liu XJ, Liu Y, Liang J, et al. In vitro study of the effect of a lactoperoxidase-peroxidase-thiocyanate system with iodine on the cariogenicinity of Streptococcus mutans[J]. West China J Stomatol, 2014, 32(4):404-408.
(本文采编 王晴)
[1] 卢可心,张迪亚,吴燕岷. 蛋白酶激活受体在牙周组织细胞中相关作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 657-662.
[2] 王蕊,盖阔,刘梦齐,蒋丽. 原子力显微镜在细菌黏附力学研究中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 687-692.
[3] 王琳璇,王琦,赵云,米方林. 促红细胞生成素肝细胞激酶受体及其膜结合配体对牙槽骨改建作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 724-729.
[4] 冯旭,张祎,李梦红,刘楠,王六一,胡敏. 无托槽隐形矫治对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 166-170.
[5] 张勤,宫苹. 受体活性修饰蛋白1促进成骨作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 30-36.
[6] 刘梦齐,盖阔,蒋丽. 抗菌性口腔种植材料的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 516-521.
[7] 毛璐,鞠侯雨,任国欣. 程序性细胞死亡受体-1与其配体信号通路的调控及其在头颈鳞状细胞癌治疗中的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 560-565.
[8] 姜懿轩,莫龙义,贾小玥,徐欣,刘程程. 植物雌激素防治牙周炎的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 571-578.
[9] 丛雯雯, 张岱尊, 肖文林, 薛令法, 许尧祥. C57BL/6J小鼠体外腭突悬浮培养过程中血小板衍化生长因子受体α的表达变化[J]. 国际口腔医学杂志, 2018, 45(3): 313-318.
[10] 张煦, 许恩馨, 阮敏. Toll样受体9与头颈部鳞状细胞癌关系的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 596-601.
[11] 王娜娜, 陈莉丽, 丁佩惠. 核苷酸结合寡聚化结构域样受体家族热蛋白结构域3炎性小体与牙周炎[J]. 国际口腔医学杂志, 2017, 44(4): 484-487.
[12] 盖阔, 郝丽英, 蒋丽. 应用原子力显微镜对口腔变异链球菌黏附机制的研究[J]. 国际口腔医学杂志, 2017, 44(3): 320-324.
[13] 张雪, 徐召南, 刘麒麟, 李超, 孙宏晨. 激活素受体样激酶2及其在颅面部生长发育中的作用[J]. 国际口腔医学杂志, 2017, 44(2): 235-238.
[14] 张嘉熙1,何美丽1,赵冰松1,李临梅2. 促红细胞生成素在成骨细胞分化中的实验研究[J]. 国际口腔医学杂志, 2016, 43(6): 636-639.
[15] 孙晶晶,李江. 唾液腺乳腺样分泌癌的研究进展[J]. 国际口腔医学杂志, 2016, 43(6): 677-684.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[8] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[9] 康健,华成舸. 术前诱导化疗在头颈部肿瘤预后评价中的意义[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 唐翀,宣鸣. 软骨组织工程支架材料的研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .