Int J Stomatol ›› 2025, Vol. 52 ›› Issue (2): 210-216.doi: 10.7518/gjkq.2025029

• Original Articles • Previous Articles     Next Articles

Mechanism of action of aureobasidin A against Candida albicans based on transcriptomics analysis

Jiaxin Yi1(),Jianchun Liao2,Yi Huang3,Wei Fei4,Jun Guo3()   

  1. 1.Dept. of Stomatology, School of Medicine University of Electronic Science and Technology of China, Chengdu 610072, China
    2.Dept. of Stomatology, Luojiang District People’s Hospital in Deyang, Deyang 618000, China
    3.Dept. of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China
    4.Dept. of Stomatology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (Wenjiang Campus), Chengdu 611100, China
  • Received:2024-08-30 Revised:2024-12-11 Online:2025-03-01 Published:2025-03-01
  • Contact: Jun Guo E-mail:yijiaxin1999@163.com;guojun-001@qq.com
  • Supported by:
    Sichuan Provincial Cadre Health Care Research Topic(2022-209)

Abstract:

Objective This study aimed to investigate the antibacterial activity and potential mechanism of aureobasi-dium A (AbA) against Candida albicans (C. albicans), as well as to evaluate its potential as a new antifungal drug in the future. Methods The minimum inhibitory concentration (MIC) of AbA was determined. The effect of MIC on mycelium formation and cell-wall integrity were investigated. Subsequently, transcriptome sequencing was used to investigate the response mechanism of C. albicans to AbA. Results In vitro results showed that the MIC of AbA was 0.062 5 μg/mL, and it significantly inhibited C. albicans morphogenesis and disrupted cell-wall integrity. Transcriptome sequencing identified 700 differentially expressed genes, including 465 upre-gulated and 235 downregulated genes. Gene ontology enrichment analysis revealed that pathways related to the extracellular region, plasma membrane, fungal cell wall, and redox enzyme activity were the most enriched. Enrichment analysis through the kyoto encyclopedia of genes and genomes indicated that the metabolic pathway was the most significantly enriched pathway. Conclusion AbA exhibited strong inhibitory activity against C. albicans. Its potential antimicrobial mechanisms may include inhibiting hyphal formation, disrupting the plasma membrane, reducing immune evasion, and suppressing metabolic activity. Understanding these mechanisms can provide valuable theoretical insights into the development of more effective antifungal-treatment strategies.

Key words: Candida albicans, aureobasidin A, transcriptome sequencing, kyoto encyclopedia of genes and genomes enrichment analysis, gene ontology enrichment analysis

CLC Number: 

  • R780.2

TrendMD: 

Tab 1

Primer information"

引物名称引物序列(5’—3’)
ALS3-FTACGCAACCACTACCATTACC
ALS3-RCACCTGGAGCAGTGATTGTAG
HWP1-FGCTCCTGCCACTGAACCTTCC
HWP1-RTTGGAGAAGAAGAAGCACCTGGAC
EFG1-FCGTTGCTGCTGCTACTACTACTG
EFG1-RTGAGGATACTGCTGTTGGTTGTAAG
EAP1-FGGGATGATTACAAGAAAG
EAP1-RGTGACGGTGATGATAGTG
TUP1-FCAACAGCAACAGCAGCAACAAC
TUP1-RACAACTGACGAGTGGTCTAAGGAG
GSP1-FTGAAGTCCATCCATTAGGAT
GSP1-RATCTCTATGCCAGTTTGGAA

Fig 1

The effect of AbA on the hyphal formation of Candida albicans observed under an inverted microscope"

Fig 2

Effect of AbA on the morphology and hyphal formation of Can-dida albicans SEM ×1 000"

Fig 3

Volcanic map of differential gene distribution of Candida albicans between experimental group and AbA treated group"

Fig 4

GO enrichment analysis of differential gene expression in Candida albicans before and after AbA treatment"

Fig 5

KEGG enrichment analysis of differential gene expression in Candida albicans before and after AbA treatment"

Fig 6

Statistical difference of ALS3, HWP1, EFG1, EAP1, TUP1 gene expression after AbA treatment"

1 Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis[J]. Semin Cancer Biol, 2022, 86(Pt 3): 633-642.
2 Lu H, Hong T, Jiang YY, et al. Candidiasis: from cutaneous to systemic, new perspectives of potential targets and therapeutic strategies[J]. Adv Drug Deliv Rev, 2023, 199: 114960.
3 Ponde NO, Lortal L, Ramage G, et al. Candida albicans biofilms and polymicrobial interactions[J]. Crit Rev Microbiol, 2021, 47(1): 91-111.
4 Lohse MB, Gulati M, Johnson AD, et al. Development and regulation of single- and multi-species Candida albicans biofilms[J]. Nat Rev Microbiol, 2018, 16(1): 19-31.
5 Fan FM, Liu Y, Liu YQ, et al. Candida albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies[J]. Int J Antimicrob Agents, 2022, 60(5/6): 106673.
6 Lee YJ, Puumala E, Robbins N, et al. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond[J]. Chem Rev, 2021, 121(6): 3390-3411.
7 骆阳, 徐兴伟, 嵇武. 白色念珠菌致病机制研究进展[J]. 山东医药, 2023, 63(29): 111-114.
Luo Y, Xu XW, Ji W. Research progress on pathogenic mechanism of Candida albicans [J]. Shandong Med J, 2023, 63(29): 111-114.
8 Zida A, Bamba S, Yacouba A, et al. Anti-Candida albicans natural products, sources of new antifungal drugs: a review[J]. J Mycol Med, 2017, 27(1): 1-19.
9 Sugimoto Y, Sakoh H, Yamada K. IPC synthase as a useful target for antifungal drugs[J]. Curr Drug Targets Infect Disord, 2004, 4(4): 311-322.
10 Taş N, de Jong AE, Li YM, et al. Metagenomic tools in microbial ecology research[J]. Curr Opin Biotechnol, 2021, 67: 184-191.
11 Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies[J]. Mol Cell, 2015, 58(4): 586-597.
12 Brauner A, Fridman O, Gefen O, et al. Distingui-shing between resistance, tolerance and persistence to antibiotic treatment[J]. Nat Rev Microbiol, 2016, 14(5): 320-330.
13 Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, et al. Candida albicans biofilm growth and dispersal: contributions to pathogenesis[J]. Curr Opin Microbiol, 2019, 52: 1-6.
14 Odds FC. Pathogenesis of candida infections[J]. J Am Acad Dermatol, 1994, 31(3 Pt 2): S2-S5.
15 Martin R, Wächtler B, Schaller M, et al. Host-pathogen interactions and virulence-associated genes du-ring Candida albicans oral infections[J]. Int J Med Microbiol, 2011, 301(5): 417-422.
16 Arita GS, Faria DR, Capoci IRG, et al. Cell wall associated proteins involved in filamentation with impact on the virulence of Candida albicans [J]. Microbiol Res, 2022, 258: 126996.
17 Fan Y, He H, Dong Y, et al. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans [J]. Mycopa-thologia, 2013, 176(5/6): 329-335.
18 Kumar D, Kumar A. Molecular determinants invo-lved in Candida albicans biofilm formation and re-gulation[J]. Mol Biotechnol, 2024, 66(7): 1640-1659.
19 Zheng LJ, Xu Y, Dong YB, et al. Chromosome 1 trisomy confers resistance to aureobasidin A in Candida albicans [J]. Front Microbiol, 2023, 14: 1128160.
20 Rao KH, Paul S, Natarajan K, et al. N-acetylgluco-samine kinase, Hxk1 is a multifaceted metabolic enzyme in model pathogenic yeast Candida albicans [J]. Microbiol Res, 2022, 263: 127146.
21 Hoyer LL. The ALS gene family of Candida albicans [J]. Trends Microbiol, 2001, 9(4): 176-180.
22 Sui X, Yan L, Jiang YY. The vaccines and antibo-dies associated with Als3p for treatment of Candida albicans infections[J]. Vaccine, 2017, 35(43): 5786-5793.
23 周文婷, 李琛妍, 黄凯黎, 等. 白色念珠菌菌丝形成与黏附侵袭致病的调控机制研究[J]. 右江民族医学院学报, 2022, 44(5): 744-748.
Zhou WT, Li CY, Huang KL, et al. Study on the re-gulation mechanism of Candida albicans mycelia formation and adhesion invasion[J]. J Youjiang Med Univ Natl, 2022, 44(5): 744-748.
24 Denny P, Feuermann M, Hill DP, et al. Exploring autophagy with gene ontology[J]. Autophagy, 2018, 14(3): 419-436.
25 Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional cha-racterization of genome and metagenome sequences[J]. J Mol Biol, 2016, 428(4): 726-731.
26 Yang T, Hui RT, Nouws J, et al. Untargeted metabolomics analysis of esophageal squamous cell cancer progression[J]. J Transl Med, 2022, 20(1): 127.
27 Padder SA, Ramzan A, Tahir I, et al. Metabolic fle-xibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Candida albicans [J]. Crit Rev Microbiol, 2022, 48(1): 1-20.
[1] Yang Sirui,Ren Biao,Peng Xian,Xu Xin. Research progress on drug synergism with fluconazole in fluconazole-resistant Candida albicans [J]. Int J Stomatol, 2022, 49(5): 511-520.
[2] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[3] Liu Qianxi,Wu Jiayi,Ren Biao,Huang Ruijie. Research progress on the interactions between Enterococcus faecalis and other oral microorganisms [J]. Int J Stomatol, 2022, 49(3): 290-295.
[4] Xiong Kaixin,Zou Ling. Correlation between Candida albicans, Actinomyces viscosus, and root caries [J]. Int J Stomatol, 2021, 48(2): 187-191.
[5] Li Fan,Zhang Lijuan,Tan Kaixuan,Zhang Ying,Lu Jie,Li Shanshan,Yang Fang. Antimicrobial effect of chlorhexidine on Candida albicans in vitro according to D2O-labeled single-cell Raman micro-spectroscopy [J]. Int J Stomatol, 2021, 48(1): 35-40.
[6] Hu Yao,Cheng Lei,Guo Qiang,Ren Biao. Research progress on cross-kingdom interactions between Candida albicans and common oral bacteria [J]. Int J Stomatol, 2019, 46(6): 663-669.
[7] Wen Shuqiong,Guo Junyi,Dai Wenxiao,Wang Dikan,Wang Zhi. Research progress on the mechanism of Candida albicans in oral carcinogenesis [J]. Int J Stomatol, 2019, 46(6): 705-710.
[8] Qian Du,Biao Ren,Xuedong Zhou,Xin Xu. The microbial ecology of root caries [J]. Int J Stomatol, 2019, 46(3): 326-332.
[9] Yilong Hao,Yu Zhou,Qianming Chen. Research progress on the risk factors of median rhomboid glossitis [J]. Int J Stomatol, 2019, 46(3): 333-338.
[10] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .