Int J Stomatol ›› 2023, Vol. 50 ›› Issue (5): 603-612.doi: 10.7518/gjkq.2023077
• Reviews • Previous Articles Next Articles
Song Wenpeng1,2(),Gong Beiwen3,Li Dan2,Zeng Jianyu2,Qiu Lingling3()
CLC Number:
1 | Tsichlaki A, Chin SY, Pandis N, et al. How long does treatment with fixed orthodontic appliances last? A systematic review[J]. Am J Orthod Dentofacial Orthop, 2016, 149(3): 308-318. |
2 | El-Bialy T, Farouk K, Carlyle TD, et al. Effect of low intensity pulsed ultrasound (LIPUS) on tooth movement and root resorption: a prospective multi-center randomized controlled trial[J]. J Clin Med, 2020, 9(3): 804. |
3 | Wishney M. Potential risks of orthodontic therapy: a critical review and conceptual framework[J]. Aust Dent J, 2017, 62(): 86-96. |
4 | Sulewska M, Duraj E, Bugała-Musiatowicz B, et al. Assessment of the effect of the corticotomy-assisted orthodontic treatment on the maxillary periodontal tissue in patients with malocclusions with transverse maxillary deficiency: a case series[J]. BMC Oral Health, 2018, 18(1): 162. |
5 | Kim YS, Kim SJ, Yoon HJ, et al. Effect of piezopuncture on tooth movement and bone remodeling in dogs[J]. Am J Orthod Dentofacial Orthop, 2013, 144(1): 23-31. |
6 | Brudvik P, Rygh P. Root resorption after local injection of prostaglandin E2 during experimental tooth movement[J]. Eur J Orthod, 1991, 13(4): 255-263. |
7 | Mayama A, Seiryu M, Takano-Yamamoto T. Effect of vibration on orthodontic tooth movement in a double blind prospective randomized controlled trial[J]. Sci Rep, 2022, 12(1): 1288. |
8 | Bakdach WMM, Hadad R. Effectiveness of low-le-vel laser therapy in accelerating the orthodontic tooth movement: a systematic review and meta-analysis[J]. Dent Med Probl, 2020, 57(1): 73-94. |
9 | Marquezan M, Bolognese AM, de Souza Araújo MT. Evaluation of two protocols for low-level laser application in patients submitted to orthodontic treatment[J]. Dental Press J Orthod, 2013, 18(1): 33.e1-33.e339. |
10 | Souilhol C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes[J]. Nat Rev Cardiol, 2020, 17(1): 52-63. |
11 | d’Agostino MC, Craig K, Tibalt E, et al. Shock wave as biological therapeutic tool: from mechanical stimulation to recovery and healing, through mechanotransduction[J]. Int J Surg, 2015, 24(Pt B): 147-153. |
12 | Jiang XX, Savchenko O, Li YF, et al. A review of low-intensity pulsed ultrasound for therapeutic applications[J]. IEEE Trans Biomed Eng, 2019, 66(10): 2704-2718. |
13 | Claes L, Willie B. The enhancement of bone rege-neration by ultrasound[J]. Prog Biophys Mol Biol, 2007, 93(1/2/3): 384-398. |
14 | Shobara K, Ogawa T, Shibamoto A, et al. Osteoge-nic effect of low-intensity pulsed ultrasound and whole-body vibration on peri-implant bone. An experimental in vivo study[J]. Clin Oral Implants Res, 2021, 32(5): 641-650. |
15 | Jiang YX, Yuan Y, Xiong Y, et al. Low-intensity pulsed ultrasound improves osseointegration of dental implant in mice by inducing local neuronal production of αCGRP[J]. Arch Oral Biol, 2020, 115: 104736. |
16 | Schätzle M, Männchen R, Zwahlen M, et al. Survi-val and failure rates of orthodontic temporary ancho-rage devices: a systematic review[J]. Clin Oral Implants Res, 2009, 20(12): 1351-1359. |
17 | Ure DS, Oliver DR, Kim KB, et al. Stability chan-ges of miniscrew implants over time[J]. Angle Orthod, 2011, 81(6): 994-1000. |
18 | Ganzorig K, Kuroda S, Maeda Y, et al. Low-intensity pulsed ultrasound enhances bone formation ar-ound miniscrew implants[J]. Arch Oral Biol, 2015, 60(6): 902-910. |
19 | Miura K, Motoyoshi M, Inaba M, et al. A preliminary study of the effects of low-intensity pulsed ultrasound exposure on the stability of orthodontic miniscrews in growing rats[J]. Eur J Orthod, 2014, 36(4): 419-424. |
20 | Alazzawi MMJ, Husein A, Alam MK, et al. Effect of low level laser and low intensity pulsed ultrasound therapy on bone remodeling during orthodontic tooth movement in rats[J]. Prog Orthod, 2018, 19(1): 10. |
21 | Xue H, Zheng J, Cui ZP, et al. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway[J]. PLoS One, 2013, 8(7): e68926. |
22 | Al-Dboush R, Esfahani AN, El-Bialy T. Impact of photobiomodulation and low-intensity pulsed ultrasound adjunctive interventions on orthodontic treatment duration during clear aligner therapy[J]. Angle Orthod, 2021, 91(5): 619-625. |
23 | Kaur H, El-Bialy T. Shortening of overall orthodontic treatment duration with low-intensity pulsed ultrasound (LIPUS)[J]. J Clin Med, 2020, 9(5): 1303. |
24 | Inubushi T, Tanaka E, Rego EB, et al. Ultrasound stimulation attenuates resorption of tooth root induced by experimental force application[J]. Bone, 2013, 53(2): 497-506. |
25 | Qamruddin I, Alam MK, Mahroof V, et al. Biostimulatory effects of low-intensity pulsed ultrasound on rate of orthodontic tooth movement and associated pain, applied at 3-week intervals: a split-mouth study[J]. Pain Res Manag, 2021, 2021: 6624723. |
26 | Fang XW, Qi R, Liu CF. Root resorption in ortho-dontic treatment with clear aligners: a systematic review and meta-analysis[J]. Orthod Craniofac Res, 2019, 22(4): 259-269. |
27 | Feres MFN, Kucharski C, Diar-Bakirly S, et al. Effect of low-intensity pulsed ultrasound on the activity of osteoclasts: an in vitro study[J]. Arch Oral Biol, 2016, 70: 73-78. |
28 | Liu ZF, Xu J, Lingling E, et al. Ultrasound enhances the healing of orthodontically induced root resorption in rats[J]. Angle Orthod, 2012, 82(1): 48-55. |
29 | Amuk NG, Kurt G, Guray E. Effects of photobiomodulation and ultrasound applications on orthodon-tically induced inflammatory root resorption; transcriptional alterations in OPG, RANKL, Cox-2: an experimental study in rats[J]. Photomed Laser Surg, 2018, 36(12): 653-659. |
30 | Dalla-Bona DA, Tanaka E, Inubushi T, et al. Cementoblast response to low-and high-intensity ultrasound[J]. Arch Oral Biol, 2008, 53(4): 318-323. |
31 | Al-Daghreer S, Doschak M, Sloan AJ, et al. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption in beagle dogs[J]. Ultrasound Med Biol, 2014, 40(6): 1187-1196. |
32 | Alshihah N, Alhadlaq A, El-Bialy T, et al. The effect of low intensity pulsed ultrasound on dentoalveolar structures during orthodontic force application in diabetic ex-vivo model[J]. Arch Oral Biol, 2020, 119: 104883. |
33 | El-Bialy T, Lam B, Aldaghreer S, et al. The effect of low intensity pulsed ultrasound in a 3D ex vivo or-thodontic model[J]. J Dent, 2011, 39(10): 693-699. |
34 | Dahhas FY, El-Bialy T, Afify AR, et al. Effects of low-intensity pulsed ultrasound on orthodontic tooth movement and orthodontically induced inflammatory root resorption in ovariectomized osteoporotic rats[J]. Ultrasound Med Biol, 2016, 42(3): 808-814. |
35 | El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans[J]. Am J Orthod Dentofacial Orthop, 2004, 126(2): 186-193. |
36 | Raza H, Major P, Dederich D, et al. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption caused by torque: a prospective, double-blind, controlled clinical trial[J]. Angle Orthod, 2016, 86(4): 550-557. |
37 | Wang H, Wan Y, Tam KF, et al. Resistive vibration exercise retards bone loss in weight-bearing skeletons during 60 days bed rest[J]. Osteoporos Int, 2012, 23(8): 2169-2178. |
38 | Nishimura M, Chiba M, Ohashi T, et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats[J]. Am J Orthod Dentofacial Orthop, 2008, 133(4): 572-583. |
39 | Alikhani M, Alansari S, Hamidaddin MA, et al. Vibration paradox in orthodontics: anabolic and catabolic effects[J]. PLoS One, 2018, 13(5): e0196540. |
40 | Sasaki K, Takeshita N, Fukunaga T, et al. Vibration accelerates orthodontic tooth movement by inducing osteoclastogenesis via transforming growth factor‑β signalling in osteocytes[J]. Eur J Orthod, 2022, 44(6): 698-704. |
41 | Telatar BC, Gungor AY. Effectiveness of vibrational forces on orthodontic treatment: a randomized, controlled clinical trial[J]. J Orofac Orthop, 2021, 82(5): 288-294. |
42 | Orton-Gibbs S, Kim NY. Clinical experience with the use of pulsatile forces to accelerate treatment[J]. J Clin Orthod, 2015, 49(9): 557-573. |
43 | Orton-Gibbs S. Accelerated orthodontics using pulsatile forces in orthognathic surgical patients[J]. J Clin Orthod, 2016, 50(10): 592-604. |
44 | Bowman SJ. The effect of vibration on molar dista-lization[J]. J Clin Orthod, 2016, 50(11): 683-693. |
45 | Bowman SJ. The effect of vibration on the rate of leveling and alignment[J]. J Clin Orthod, 2014, 48(11): 678-688. |
46 | Pavlin D, Anthony R, Raj V, et al. Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: a double-blind, randomized controlled trial[J]. Semin Orthod, 2015, 21(3): 187-194. |
47 | Liao ZP, Elekdag-Turk S, Turk T, et al. Computational and clinical investigation on the role of mechanical vibration on orthodontic tooth movement[J]. J Biomech, 2017, 60: 57-64. |
48 | Leethanakul C, Suamphan S, Jitpukdeebodintra S, et al. Vibratory stimulation increases interleukin-1 beta secretion during orthodontic tooth movement[J]. Angle Orthod, 2016, 86(1): 74-80. |
49 | Benjakul S, Unat B, Thammanichanon P, et al. Vibration synergistically enhances IL-1β and TNF‑α in compressed human periodontal ligament cells in the frequency-dependent manner[J]. J Oral Biol Craniofac Res, 2020, 10(4): 412-416. |
50 | Iwasaki LR, Haack JE, Nickel JC, et al. Human interleukin-1 beta and interleukin-1 receptor antagonist secretion and velocity of tooth movement[J]. Arch Oral Biol, 2001, 46(2): 185-189. |
51 | Teixeira CC, Khoo E, Tran J, et al. Cytokine expression and accelerated tooth movement[J]. J Dent Res, 2010, 89(10): 1135-1141. |
52 | Ren YJ, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement[J]. Eur J Oral Sci, 2008, 116(2): 89-97. |
53 | Figueredo CMS, Ribeiro MSM, Fischer RG, et al. Increased interleukin-1β concentration in gingival crevicular fluid as a characteristic of periodontitis[J]. J Periodontol, 1999, 70(12): 1457-1463. |
54 | Phusuntornsakul P, Jitpukdeebodintra S, Pavasant P, et al. Vibration enhances PGE2, IL-6, and IL-8 expression in compressed hPDL cells via cyclooxygenase pathway[J]. J Periodontol, 2018, 89(9): 1131-1141. |
55 | Benjakul S, Leethanakul C, Jitpukdeebodintra S. Low magnitude high frequency vibration induces RANKL via cyclooxygenase pathway in human periodontal ligament cells in vitro [J]. J Oral Biol Craniofac Res, 2019, 9(3): 251-255. |
56 | Waelkens P, Alsabbagh E, Sauter A, et al. Pain ma-nagement after complex spine surgery: a systematic review and procedure-specific postoperative pain management recommendations[J]. Eur J Anaesthe-siol, 2021, 38(9): 985-994. |
57 | Alamir AH, Patil S. Allicin could potentially alle-viate oral cancer pain by inhibiting “pain mediators” TNF-alpha, IL-8, and endothelin[J]. Curr Issues Mol Biol, 2021, 43(1): 187-196. |
58 | Öztürk T, Amuk NG. Three-dimensional imaging and molecular analysis of the effects of photobiomodulation and mechanical vibration on orthodontic retention treatment in rats: effects of photobiomodulation and mechanical vibration on orthodontic retention treatment[J]. J Orofac Orthop, 2022, 83(): 24-41. |
59 | Thammanichanon P, Kaewpitak A, Binlateh T, et al. Interval vibration reduces orthodontic pain via a mechanism involving down-regulation of TRPV1 and CGRP[J]. In Vivo, 2020, 34(5): 2389-2399. |
60 | Bakdach WMM, Hadad R. Effectiveness of supplemental vibrational force in reducing pain associated with orthodontic treatment: a systematic review[J]. Quintessence Int, 2020, 51(9): 742-752. |
61 | Taha K, Conley RS, Arany P, et al. Effects of mechanical vibrations on maxillary canine retraction and perceived pain: a pilot, single-center, rando-mized-controlled clinical trial[J]. Odontology, 2020, 108(2): 321-330. |
62 | Woodhouse NR, DiBiase AT, Papageorgiou SN, et al. Supplemental vibrational force does not reduce pain experience during initial alignment with fixed orthodontic appliances: a multicenter randomized clinical trial[J]. Sci Rep, 2015, 5: 17224. |
63 | Woodhouse NR, DiBiase AT, Johnson N, et al. Supplemental vibrational force during orthodontic alignment: a randomized trial[J]. J Dent Res, 2015, 94(5): 682-689. |
64 | Reiss S, Chouinard MC, Landa DF, et al. Biomar-kers of orthodontic tooth movement with fixed appliances and vibration appliance therapy: a pilot study[J]. Eur J Orthod, 2020, 42(4): 378-386. |
65 | DiBiase AT, Woodhouse NR, Papageorgiou SN, et al. Effect of supplemental vibrational force on orthodontically induced inflammatory root resorption: a multicenter randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2016, 150(6): 918-927. |
66 | DiBiase AT, Woodhouse NR, Papageorgiou SN, et al. Effects of supplemental vibrational force on space closure, treatment duration, and occlusal outcome: a multicenter randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2018, 153(4): 469.e4-480.e4. |
67 | Katchooi M, Cohanim B, Tai S, et al. Effect of supplemental vibration on orthodontic treatment with aligners: a randomized trial[J]. Am J Orthod Dentofacial Orthop, 2018, 153(3): 336-346. |
68 | Aljabaa A, Almoammar K, Aldrees A, et al. Effects of vibrational devices on orthodontic tooth movement: a systematic review[J]. Am J Orthod Dentofacial Orthop, 2018, 154(6): 768-779. |
69 | Lombardo L, Arreghini A, Huanca Ghislanzoni LT, et al. Does low-frequency vibration have an effect on aligner treatment? A single-centre, randomized controlled trial[J]. Eur J Orthod, 2019, 41(4): 434-443. |
70 | Robertson MA, Kau CH, English JD, et al. MI paste plus to prevent demineralization in orthodontic pa-tients: a prospective randomized controlled trial[J]. Am J Orthod Dentofacial Orthop, 2011, 140(5): 660-668. |
71 | Shi L, Gao F, Sun W, et al. Short-term effects of extracorporeal shock wave therapy on bone mineral density in postmenopausal osteoporotic patients[J]. Osteoporos Int, 2017, 28(10): 2945-2953. |
72 | McClure SR, Van sickle D, White MR. Effects of extracorporeal shock wave therapy on bone[J]. Vet Surg, 2004, 33(1): 40-48. |
73 | Koch M, Schapher M, Mantsopoulos K, et al. Multimodal treatment in difficult sialolithiasis: role of extracorporeal shock-wave lithotripsy and intraductal pneumatic lithotripsy[J]. Laryngoscope, 2018, 128(10): E332-E338. |
74 | Hazan-Molina H, Reznick AZ, Kaufman H, et al. Assessment of IL-1β and VEGF concentration in a rat model during orthodontic tooth movement and extracorporeal shock wave therapy[J]. Arch Oral Biol, 2013, 58(2): 142-150. |
75 | Hazan-Molina H, Kaufman H, Reznick ZA, et al. Orthodontic tooth movement under extracorporeal shock wave therapy: the characteristics of the inflammatory reaction: a preliminary study[J]. Refuat Hapeh Vehashinayim (1993), 2011, 28(3): 55-60, 71. |
76 | Hazan-Molina H, Reznick AZ, Kaufman H, et al. Periodontal cytokines profile under orthodontic force and extracorporeal shock wave stimuli in a rat model[J]. J Periodontal Res, 2015, 50(3): 389-396. |
77 | Hazan-Molina H, Aizenbud I, Kaufman H, et al. The influence of shockwave therapy on orthodontic tooth movement induced in the rat[J]. Adv Exp Med Biol, 2016, 878: 57-65. |
78 | Demir O, Arici N. Dose-related effects of extracorporeal shock waves on orthodontic tooth movement in rabbits[J]. Sci Rep, 2021, 11(1): 3405. |
79 | Song WP, Ma XH, Sun YX, et al. Extracorporeal shock wave therapy (ESWT) may be helpful in the osseointegration of dental implants: a hypothesis[J]. Med Hypotheses, 2020, 145: 110294. |
80 | Falkensammer F, Rausch-Fan X, Schaden W, et al. Impact of extracorporeal shockwave therapy on tooth mobility in adult orthodontic patients: a randomized single-center placebo-controlled clinical trial[J]. J Clin Periodontol, 2015, 42(3): 294-301. |
81 | Karkhanechi M, Chow D, Sipkin J, et al. Periodontal status of adult patients treated with fixed buccal appliances and removable aligners over one year of active orthodontic therapy[J]. Angle Orthod, 2013, 83(1): 146-151. |
82 | Müller P, Guggenheim B, Attin T, et al. Potential of shock waves to remove calculus and biofilm[J]. Clin Oral Investig, 2011, 15(6): 959-965. |
83 | Novak KF, Govindaswami M, Ebersole JL, et al. Effects of low-energy shock waves on oral bacteria[J]. J Dent Res, 2008, 87(10): 928-931. |
84 | Falkensammer F, Arnhart C, Krall C, et al. Impact of extracorporeal shock wave therapy (ESWT) on orthodontic tooth movement-a randomized clinical trial[J]. Clin Oral Investig, 2014, 18(9): 2187-2192. |
85 | Koolen MKE, Kruyt MC, Zadpoor AA, et al. Optimization of screw fixation in rat bone with extracorpo-real shock waves[J]. J Orthop Res, 2018, 36(1): 76-84. |
86 | Falkensammer F, Rausch-Fan X, Arnhart C, et al. Impact of extracorporeal shock-wave therapy on the stability of temporary anchorage devices in adults: a single-center, randomized, placebo-controlled clinical trial[J]. Am J Orthod Dentofacial Orthop, 2014, 146(4): 413-422. |
[1] | Jiang Qingsong,Lai Wenli,Wang Yan.. Research progress on bone augmentation technique in orthodontics [J]. Int J Stomatol, 2023, 50(2): 243-250. |
[2] | Zhao Zhihe.. Difficulty assessment of invisible orthodontic treatment based on treatment plan and tooth movement pattern [J]. Int J Stomatol, 2022, 49(4): 373-379. |
[3] | Guo Ziyuan,Chang Xiao,Han Kaifang,Zhang Xizhong. Low-level laser therapy for acceleration of fixed orthodontic tooth movement: a systematic review and meta-analysis [J]. Int J Stomatol, 2022, 49(2): 163-172. |
[4] | Zhou Mengqi,Chen Xuepeng,Fu Baiping. Strategies for preventing alveolar-bone dehiscence and fenestration during orthodontic treatment [J]. Int J Stomatol, 2021, 48(5): 600-608. |
[5] | Zhao Zhihe. Comparison of anterior tooth torque design in digital orthodontics [J]. Int J Stomatol, 2021, 48(1): 1-6. |
[6] | Yang Hong,Jin Yu,Lai Wenli. Randomized cross-control trial of placebo in the regulation of orthodontic tooth movement pain [J]. Int J Stomatol, 2020, 47(4): 424-430. |
[7] | Li Hanyue,Xia Lulu,Hua Xianming. Clinical advances of periodontally accelerated osteogenic orthodontics [J]. Int J Stomatol, 2020, 47(2): 206-211. |
[8] | Song Shaohua,Mo Shuixue. Orthodontic treatment in sequential treatment of cleft lip and palate [J]. Int J Stomatol, 2019, 46(6): 740-744. |
[9] | Mengyuan Zhao,Sijia Li,Yunzi Bai,Zhen Tian,Ding Bai. Patients’ concerns and preferences for orthodontic treatment: a questionnaire study [J]. Int J Stomatol, 2019, 46(3): 287-291. |
[10] | Tiancheng Li,Kai Xia,Shujuan Zou,Jun Liu. Effect of tooth extraction for the orthodontic treatment of the upper airway: a systematic review [J]. Inter J Stomatol, 2019, 46(2): 156-165. |
[11] | Xu Zhang,Yanxi Li,Hanshi Li,Jieya Wei,Xinyu Yan,Wei Zheng,Yu Li. Research progress on the prediction of the changes in soft tissue profile in orthodontic treatment [J]. Inter J Stomatol, 2019, 46(1): 105-111. |
[12] | Jing Xuan, Wu Xiuping, Wang Jun. Clinical research progress on lingual orthodontic techniques [J]. Inter J Stomatol, 2018, 45(1): 100-105. |
[13] | Xie Yijia, Zou Xunming, Xu Xiaomei, Lin Fuwei, Zhao Qing. Research progress on esthetics of buccal corridor [J]. Inter J Stomatol, 2018, 45(1): 106-111. |
[14] | Zheng Wei, Li Yu. New development in the comprehensive multidisciplinary treatment of gummy smile [J]. Inter J Stomatol, 2017, 44(5): 509-513. |
[15] | Wang Yaojun, Yan Bin, Wang Lin.. Research progress on constitutive model of periodontal ligament [J]. Inter J Stomatol, 2017, 44(5): 538-543. |