Int J Stomatol ›› 2023, Vol. 50 ›› Issue (5): 603-612.doi: 10.7518/gjkq.2023077

• Reviews • Previous Articles     Next Articles

Research progress on the application of mechanotherapy in orthodontic treatment

Song Wenpeng1,2(),Gong Beiwen3,Li Dan2,Zeng Jianyu2,Qiu Lingling3()   

  1. 1.Dept. of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
    2.Dept. of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
    3.Dept. of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China
  • Received:2022-12-12 Revised:2023-04-05 Online:2023-09-01 Published:2023-09-01
  • Contact: Lingling Qiu E-mail:15011482782@163.com;qll99@126.com
  • Supported by:
    Innovation Team Construction Project of Beijing Stomatological Hospital, Capital Medical University(CXTD202203)

Abstract:

Mechanotherapy has been widely applied in basic research and clinical practices due to its safety. Mechanotherapy, including extracorporeal shock wave therapy, low-intensity pulsed ultrasound, vibration therapy, etc., is able to act on proteins, cells, and tissues in multiple pathways to produce unique therapeutic effects. In recent years, with the development of research, the use of mechanotherapy to assist orthodontic treatment has received more and more attention. This article will review the research progress and related mechanisms of mechanotherapy as an adjuvant orthodontic treatment in recent years, and provide guidance for future clinical research.

Key words: orthodontics, mechanotherapy, extracorporeal shock wave therapy, low-intensity pulsed ultrasound, vibration therapy

CLC Number: 

  • R 783.5

TrendMD: 

Fig 1

Auxiliary effect of LIPUS on orthodontic treatment"

Fig 2

The usage of three mechanical therapies in orthodontics"

1 Tsichlaki A, Chin SY, Pandis N, et al. How long does treatment with fixed orthodontic appliances last? A systematic review[J]. Am J Orthod Dentofacial Orthop, 2016, 149(3): 308-318.
2 El-Bialy T, Farouk K, Carlyle TD, et al. Effect of low intensity pulsed ultrasound (LIPUS) on tooth movement and root resorption: a prospective multi-center randomized controlled trial[J]. J Clin Med, 2020, 9(3): 804.
3 Wishney M. Potential risks of orthodontic therapy: a critical review and conceptual framework[J]. Aust Dent J, 2017, 62(): 86-96.
4 Sulewska M, Duraj E, Bugała-Musiatowicz B, et al. Assessment of the effect of the corticotomy-assisted orthodontic treatment on the maxillary periodontal tissue in patients with malocclusions with transverse maxillary deficiency: a case series[J]. BMC Oral Health, 2018, 18(1): 162.
5 Kim YS, Kim SJ, Yoon HJ, et al. Effect of piezopuncture on tooth movement and bone remodeling in dogs[J]. Am J Orthod Dentofacial Orthop, 2013, 144(1): 23-31.
6 Brudvik P, Rygh P. Root resorption after local injection of prostaglandin E2 during experimental tooth movement[J]. Eur J Orthod, 1991, 13(4): 255-263.
7 Mayama A, Seiryu M, Takano-Yamamoto T. Effect of vibration on orthodontic tooth movement in a double blind prospective randomized controlled trial[J]. Sci Rep, 2022, 12(1): 1288.
8 Bakdach WMM, Hadad R. Effectiveness of low-le-vel laser therapy in accelerating the orthodontic tooth movement: a systematic review and meta-analysis[J]. Dent Med Probl, 2020, 57(1): 73-94.
9 Marquezan M, Bolognese AM, de Souza Araújo MT. Evaluation of two protocols for low-level laser application in patients submitted to orthodontic treatment[J]. Dental Press J Orthod, 2013, 18(1): 33.e1-33.e339.
10 Souilhol C, Serbanovic-Canic J, Fragiadaki M, et al. Endothelial responses to shear stress in atherosclerosis: a novel role for developmental genes[J]. Nat Rev Cardiol, 2020, 17(1): 52-63.
11 d’Agostino MC, Craig K, Tibalt E, et al. Shock wave as biological therapeutic tool: from mechanical stimulation to recovery and healing, through mechanotransduction[J]. Int J Surg, 2015, 24(Pt B): 147-153.
12 Jiang XX, Savchenko O, Li YF, et al. A review of low-intensity pulsed ultrasound for therapeutic applications[J]. IEEE Trans Biomed Eng, 2019, 66(10): 2704-2718.
13 Claes L, Willie B. The enhancement of bone rege-neration by ultrasound[J]. Prog Biophys Mol Biol, 2007, 93(1/2/3): 384-398.
14 Shobara K, Ogawa T, Shibamoto A, et al. Osteoge-nic effect of low-intensity pulsed ultrasound and whole-body vibration on peri-implant bone. An experimental in vivo study[J]. Clin Oral Implants Res, 2021, 32(5): 641-650.
15 Jiang YX, Yuan Y, Xiong Y, et al. Low-intensity pulsed ultrasound improves osseointegration of dental implant in mice by inducing local neuronal production of αCGRP[J]. Arch Oral Biol, 2020, 115: 104736.
16 Schätzle M, Männchen R, Zwahlen M, et al. Survi-val and failure rates of orthodontic temporary ancho-rage devices: a systematic review[J]. Clin Oral Implants Res, 2009, 20(12): 1351-1359.
17 Ure DS, Oliver DR, Kim KB, et al. Stability chan-ges of miniscrew implants over time[J]. Angle Orthod, 2011, 81(6): 994-1000.
18 Ganzorig K, Kuroda S, Maeda Y, et al. Low-intensity pulsed ultrasound enhances bone formation ar-ound miniscrew implants[J]. Arch Oral Biol, 2015, 60(6): 902-910.
19 Miura K, Motoyoshi M, Inaba M, et al. A preliminary study of the effects of low-intensity pulsed ultrasound exposure on the stability of orthodontic miniscrews in growing rats[J]. Eur J Orthod, 2014, 36(4): 419-424.
20 Alazzawi MMJ, Husein A, Alam MK, et al. Effect of low level laser and low intensity pulsed ultrasound therapy on bone remodeling during orthodontic tooth movement in rats[J]. Prog Orthod, 2018, 19(1): 10.
21 Xue H, Zheng J, Cui ZP, et al. Low-intensity pulsed ultrasound accelerates tooth movement via activation of the BMP-2 signaling pathway[J]. PLoS One, 2013, 8(7): e68926.
22 Al-Dboush R, Esfahani AN, El-Bialy T. Impact of photobiomodulation and low-intensity pulsed ultrasound adjunctive interventions on orthodontic treatment duration during clear aligner therapy[J]. Angle Orthod, 2021, 91(5): 619-625.
23 Kaur H, El-Bialy T. Shortening of overall orthodontic treatment duration with low-intensity pulsed ultrasound (LIPUS)[J]. J Clin Med, 2020, 9(5): 1303.
24 Inubushi T, Tanaka E, Rego EB, et al. Ultrasound stimulation attenuates resorption of tooth root induced by experimental force application[J]. Bone, 2013, 53(2): 497-506.
25 Qamruddin I, Alam MK, Mahroof V, et al. Biostimulatory effects of low-intensity pulsed ultrasound on rate of orthodontic tooth movement and associated pain, applied at 3-week intervals: a split-mouth study[J]. Pain Res Manag, 2021, 2021: 6624723.
26 Fang XW, Qi R, Liu CF. Root resorption in ortho-dontic treatment with clear aligners: a systematic review and meta-analysis[J]. Orthod Craniofac Res, 2019, 22(4): 259-269.
27 Feres MFN, Kucharski C, Diar-Bakirly S, et al. Effect of low-intensity pulsed ultrasound on the activity of osteoclasts: an in vitro study[J]. Arch Oral Biol, 2016, 70: 73-78.
28 Liu ZF, Xu J, Lingling E, et al. Ultrasound enhances the healing of orthodontically induced root resorption in rats[J]. Angle Orthod, 2012, 82(1): 48-55.
29 Amuk NG, Kurt G, Guray E. Effects of photobiomodulation and ultrasound applications on orthodon-tically induced inflammatory root resorption; transcriptional alterations in OPG, RANKL, Cox-2: an experimental study in rats[J]. Photomed Laser Surg, 2018, 36(12): 653-659.
30 Dalla-Bona DA, Tanaka E, Inubushi T, et al. Cementoblast response to low-and high-intensity ultrasound[J]. Arch Oral Biol, 2008, 53(4): 318-323.
31 Al-Daghreer S, Doschak M, Sloan AJ, et al. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption in beagle dogs[J]. Ultrasound Med Biol, 2014, 40(6): 1187-1196.
32 Alshihah N, Alhadlaq A, El-Bialy T, et al. The effect of low intensity pulsed ultrasound on dentoalveolar structures during orthodontic force application in diabetic ex-vivo model[J]. Arch Oral Biol, 2020, 119: 104883.
33 El-Bialy T, Lam B, Aldaghreer S, et al. The effect of low intensity pulsed ultrasound in a 3D ex vivo or-thodontic model[J]. J Dent, 2011, 39(10): 693-699.
34 Dahhas FY, El-Bialy T, Afify AR, et al. Effects of low-intensity pulsed ultrasound on orthodontic tooth movement and orthodontically induced inflammatory root resorption in ovariectomized osteoporotic rats[J]. Ultrasound Med Biol, 2016, 42(3): 808-814.
35 El-Bialy T, El-Shamy I, Graber TM. Repair of orthodontically induced root resorption by ultrasound in humans[J]. Am J Orthod Dentofacial Orthop, 2004, 126(2): 186-193.
36 Raza H, Major P, Dederich D, et al. Effect of low-intensity pulsed ultrasound on orthodontically induced root resorption caused by torque: a prospective, double-blind, controlled clinical trial[J]. Angle Orthod, 2016, 86(4): 550-557.
37 Wang H, Wan Y, Tam KF, et al. Resistive vibration exercise retards bone loss in weight-bearing skeletons during 60 days bed rest[J]. Osteoporos Int, 2012, 23(8): 2169-2178.
38 Nishimura M, Chiba M, Ohashi T, et al. Periodontal tissue activation by vibration: intermittent stimulation by resonance vibration accelerates experimental tooth movement in rats[J]. Am J Orthod Dentofacial Orthop, 2008, 133(4): 572-583.
39 Alikhani M, Alansari S, Hamidaddin MA, et al. Vibration paradox in orthodontics: anabolic and catabolic effects[J]. PLoS One, 2018, 13(5): e0196540.
40 Sasaki K, Takeshita N, Fukunaga T, et al. Vibration accelerates orthodontic tooth movement by inducing osteoclastogenesis via transforming growth factor‑β signalling in osteocytes[J]. Eur J Orthod, 2022, 44(6): 698-704.
41 Telatar BC, Gungor AY. Effectiveness of vibrational forces on orthodontic treatment: a randomized, controlled clinical trial[J]. J Orofac Orthop, 2021, 82(5): 288-294.
42 Orton-Gibbs S, Kim NY. Clinical experience with the use of pulsatile forces to accelerate treatment[J]. J Clin Orthod, 2015, 49(9): 557-573.
43 Orton-Gibbs S. Accelerated orthodontics using pulsatile forces in orthognathic surgical patients[J]. J Clin Orthod, 2016, 50(10): 592-604.
44 Bowman SJ. The effect of vibration on molar dista-lization[J]. J Clin Orthod, 2016, 50(11): 683-693.
45 Bowman SJ. The effect of vibration on the rate of leveling and alignment[J]. J Clin Orthod, 2014, 48(11): 678-688.
46 Pavlin D, Anthony R, Raj V, et al. Cyclic loading (vibration) accelerates tooth movement in orthodontic patients: a double-blind, randomized controlled trial[J]. Semin Orthod, 2015, 21(3): 187-194.
47 Liao ZP, Elekdag-Turk S, Turk T, et al. Computational and clinical investigation on the role of mechanical vibration on orthodontic tooth movement[J]. J Biomech, 2017, 60: 57-64.
48 Leethanakul C, Suamphan S, Jitpukdeebodintra S, et al. Vibratory stimulation increases interleukin-1 beta secretion during orthodontic tooth movement[J]. Angle Orthod, 2016, 86(1): 74-80.
49 Benjakul S, Unat B, Thammanichanon P, et al. Vibration synergistically enhances IL-1β and TNF‑α in compressed human periodontal ligament cells in the frequency-dependent manner[J]. J Oral Biol Craniofac Res, 2020, 10(4): 412-416.
50 Iwasaki LR, Haack JE, Nickel JC, et al. Human interleukin-1 beta and interleukin-1 receptor antagonist secretion and velocity of tooth movement[J]. Arch Oral Biol, 2001, 46(2): 185-189.
51 Teixeira CC, Khoo E, Tran J, et al. Cytokine expression and accelerated tooth movement[J]. J Dent Res, 2010, 89(10): 1135-1141.
52 Ren YJ, Vissink A. Cytokines in crevicular fluid and orthodontic tooth movement[J]. Eur J Oral Sci, 2008, 116(2): 89-97.
53 Figueredo CMS, Ribeiro MSM, Fischer RG, et al. Increased interleukin-1β concentration in gingival crevicular fluid as a characteristic of periodontitis[J]. J Periodontol, 1999, 70(12): 1457-1463.
54 Phusuntornsakul P, Jitpukdeebodintra S, Pavasant P, et al. Vibration enhances PGE2, IL-6, and IL-8 expression in compressed hPDL cells via cyclooxygenase pathway[J]. J Periodontol, 2018, 89(9): 1131-1141.
55 Benjakul S, Leethanakul C, Jitpukdeebodintra S. Low magnitude high frequency vibration induces RANKL via cyclooxygenase pathway in human periodontal ligament cells in vitro [J]. J Oral Biol Craniofac Res, 2019, 9(3): 251-255.
56 Waelkens P, Alsabbagh E, Sauter A, et al. Pain ma-nagement after complex spine surgery: a systematic review and procedure-specific postoperative pain management recommendations[J]. Eur J Anaesthe-siol, 2021, 38(9): 985-994.
57 Alamir AH, Patil S. Allicin could potentially alle-viate oral cancer pain by inhibiting “pain mediators” TNF-alpha, IL-8, and endothelin[J]. Curr Issues Mol Biol, 2021, 43(1): 187-196.
58 Öztürk T, Amuk NG. Three-dimensional imaging and molecular analysis of the effects of photobiomodulation and mechanical vibration on orthodontic retention treatment in rats: effects of photobiomodulation and mechanical vibration on orthodontic retention treatment[J]. J Orofac Orthop, 2022, 83(): 24-41.
59 Thammanichanon P, Kaewpitak A, Binlateh T, et al. Interval vibration reduces orthodontic pain via a mechanism involving down-regulation of TRPV1 and CGRP[J]. In Vivo, 2020, 34(5): 2389-2399.
60 Bakdach WMM, Hadad R. Effectiveness of supplemental vibrational force in reducing pain associated with orthodontic treatment: a systematic review[J]. Quintessence Int, 2020, 51(9): 742-752.
61 Taha K, Conley RS, Arany P, et al. Effects of mechanical vibrations on maxillary canine retraction and perceived pain: a pilot, single-center, rando-mized-controlled clinical trial[J]. Odontology, 2020, 108(2): 321-330.
62 Woodhouse NR, DiBiase AT, Papageorgiou SN, et al. Supplemental vibrational force does not reduce pain experience during initial alignment with fixed orthodontic appliances: a multicenter randomized clinical trial[J]. Sci Rep, 2015, 5: 17224.
63 Woodhouse NR, DiBiase AT, Johnson N, et al. Supplemental vibrational force during orthodontic alignment: a randomized trial[J]. J Dent Res, 2015, 94(5): 682-689.
64 Reiss S, Chouinard MC, Landa DF, et al. Biomar-kers of orthodontic tooth movement with fixed appliances and vibration appliance therapy: a pilot study[J]. Eur J Orthod, 2020, 42(4): 378-386.
65 DiBiase AT, Woodhouse NR, Papageorgiou SN, et al. Effect of supplemental vibrational force on orthodontically induced inflammatory root resorption: a multicenter randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2016, 150(6): 918-927.
66 DiBiase AT, Woodhouse NR, Papageorgiou SN, et al. Effects of supplemental vibrational force on space closure, treatment duration, and occlusal outcome: a multicenter randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2018, 153(4): 469.e4-480.e4.
67 Katchooi M, Cohanim B, Tai S, et al. Effect of supplemental vibration on orthodontic treatment with aligners: a randomized trial[J]. Am J Orthod Dentofacial Orthop, 2018, 153(3): 336-346.
68 Aljabaa A, Almoammar K, Aldrees A, et al. Effects of vibrational devices on orthodontic tooth movement: a systematic review[J]. Am J Orthod Dentofacial Orthop, 2018, 154(6): 768-779.
69 Lombardo L, Arreghini A, Huanca Ghislanzoni LT, et al. Does low-frequency vibration have an effect on aligner treatment? A single-centre, randomized controlled trial[J]. Eur J Orthod, 2019, 41(4): 434-443.
70 Robertson MA, Kau CH, English JD, et al. MI paste plus to prevent demineralization in orthodontic pa-tients: a prospective randomized controlled trial[J]. Am J Orthod Dentofacial Orthop, 2011, 140(5): 660-668.
71 Shi L, Gao F, Sun W, et al. Short-term effects of extracorporeal shock wave therapy on bone mineral density in postmenopausal osteoporotic patients[J]. Osteoporos Int, 2017, 28(10): 2945-2953.
72 McClure SR, Van sickle D, White MR. Effects of extracorporeal shock wave therapy on bone[J]. Vet Surg, 2004, 33(1): 40-48.
73 Koch M, Schapher M, Mantsopoulos K, et al. Multimodal treatment in difficult sialolithiasis: role of extracorporeal shock-wave lithotripsy and intraductal pneumatic lithotripsy[J]. Laryngoscope, 2018, 128(10): E332-E338.
74 Hazan-Molina H, Reznick AZ, Kaufman H, et al. Assessment of IL-1β and VEGF concentration in a rat model during orthodontic tooth movement and extracorporeal shock wave therapy[J]. Arch Oral Biol, 2013, 58(2): 142-150.
75 Hazan-Molina H, Kaufman H, Reznick ZA, et al. Orthodontic tooth movement under extracorporeal shock wave therapy: the characteristics of the inflammatory reaction: a preliminary study[J]. Refuat Hapeh Vehashinayim (1993), 2011, 28(3): 55-60, 71.
76 Hazan-Molina H, Reznick AZ, Kaufman H, et al. Periodontal cytokines profile under orthodontic force and extracorporeal shock wave stimuli in a rat model[J]. J Periodontal Res, 2015, 50(3): 389-396.
77 Hazan-Molina H, Aizenbud I, Kaufman H, et al. The influence of shockwave therapy on orthodontic tooth movement induced in the rat[J]. Adv Exp Med Biol, 2016, 878: 57-65.
78 Demir O, Arici N. Dose-related effects of extracorporeal shock waves on orthodontic tooth movement in rabbits[J]. Sci Rep, 2021, 11(1): 3405.
79 Song WP, Ma XH, Sun YX, et al. Extracorporeal shock wave therapy (ESWT) may be helpful in the osseointegration of dental implants: a hypothesis[J]. Med Hypotheses, 2020, 145: 110294.
80 Falkensammer F, Rausch-Fan X, Schaden W, et al. Impact of extracorporeal shockwave therapy on tooth mobility in adult orthodontic patients: a randomized single-center placebo-controlled clinical trial[J]. J Clin Periodontol, 2015, 42(3): 294-301.
81 Karkhanechi M, Chow D, Sipkin J, et al. Periodontal status of adult patients treated with fixed buccal appliances and removable aligners over one year of active orthodontic therapy[J]. Angle Orthod, 2013, 83(1): 146-151.
82 Müller P, Guggenheim B, Attin T, et al. Potential of shock waves to remove calculus and biofilm[J]. Clin Oral Investig, 2011, 15(6): 959-965.
83 Novak KF, Govindaswami M, Ebersole JL, et al. Effects of low-energy shock waves on oral bacteria[J]. J Dent Res, 2008, 87(10): 928-931.
84 Falkensammer F, Arnhart C, Krall C, et al. Impact of extracorporeal shock wave therapy (ESWT) on orthodontic tooth movement-a randomized clinical trial[J]. Clin Oral Investig, 2014, 18(9): 2187-2192.
85 Koolen MKE, Kruyt MC, Zadpoor AA, et al. Optimization of screw fixation in rat bone with extracorpo-real shock waves[J]. J Orthop Res, 2018, 36(1): 76-84.
86 Falkensammer F, Rausch-Fan X, Arnhart C, et al. Impact of extracorporeal shock-wave therapy on the stability of temporary anchorage devices in adults: a single-center, randomized, placebo-controlled clinical trial[J]. Am J Orthod Dentofacial Orthop, 2014, 146(4): 413-422.
[1] Jiang Qingsong,Lai Wenli,Wang Yan.. Research progress on bone augmentation technique in orthodontics [J]. Int J Stomatol, 2023, 50(2): 243-250.
[2] Zhao Zhihe.. Difficulty assessment of invisible orthodontic treatment based on treatment plan and tooth movement pattern [J]. Int J Stomatol, 2022, 49(4): 373-379.
[3] Guo Ziyuan,Chang Xiao,Han Kaifang,Zhang Xizhong. Low-level laser therapy for acceleration of fixed orthodontic tooth movement: a systematic review and meta-analysis [J]. Int J Stomatol, 2022, 49(2): 163-172.
[4] Zhou Mengqi,Chen Xuepeng,Fu Baiping. Strategies for preventing alveolar-bone dehiscence and fenestration during orthodontic treatment [J]. Int J Stomatol, 2021, 48(5): 600-608.
[5] Zhao Zhihe. Comparison of anterior tooth torque design in digital orthodontics [J]. Int J Stomatol, 2021, 48(1): 1-6.
[6] Yang Hong,Jin Yu,Lai Wenli. Randomized cross-control trial of placebo in the regulation of orthodontic tooth movement pain [J]. Int J Stomatol, 2020, 47(4): 424-430.
[7] Li Hanyue,Xia Lulu,Hua Xianming. Clinical advances of periodontally accelerated osteogenic orthodontics [J]. Int J Stomatol, 2020, 47(2): 206-211.
[8] Song Shaohua,Mo Shuixue. Orthodontic treatment in sequential treatment of cleft lip and palate [J]. Int J Stomatol, 2019, 46(6): 740-744.
[9] Mengyuan Zhao,Sijia Li,Yunzi Bai,Zhen Tian,Ding Bai. Patients’ concerns and preferences for orthodontic treatment: a questionnaire study [J]. Int J Stomatol, 2019, 46(3): 287-291.
[10] Tiancheng Li,Kai Xia,Shujuan Zou,Jun Liu. Effect of tooth extraction for the orthodontic treatment of the upper airway: a systematic review [J]. Inter J Stomatol, 2019, 46(2): 156-165.
[11] Xu Zhang,Yanxi Li,Hanshi Li,Jieya Wei,Xinyu Yan,Wei Zheng,Yu Li. Research progress on the prediction of the changes in soft tissue profile in orthodontic treatment [J]. Inter J Stomatol, 2019, 46(1): 105-111.
[12] Jing Xuan, Wu Xiuping, Wang Jun. Clinical research progress on lingual orthodontic techniques [J]. Inter J Stomatol, 2018, 45(1): 100-105.
[13] Xie Yijia, Zou Xunming, Xu Xiaomei, Lin Fuwei, Zhao Qing. Research progress on esthetics of buccal corridor [J]. Inter J Stomatol, 2018, 45(1): 106-111.
[14] Zheng Wei, Li Yu. New development in the comprehensive multidisciplinary treatment of gummy smile [J]. Inter J Stomatol, 2017, 44(5): 509-513.
[15] Wang Yaojun, Yan Bin, Wang Lin.. Research progress on constitutive model of periodontal ligament [J]. Inter J Stomatol, 2017, 44(5): 538-543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .