Int J Stomatol ›› 2026, Vol. 53 ›› Issue (2): 247-256.doi: 10.7518/gjkq.2026025
• Reviews • Previous Articles
Yingxin Fu1,2(
),Zhiyu Gu2,Ling Zhou2,Long Lin2,Jing Lin2,Yunkun Liu2(
)
CLC Number:
| [1] | Zhong XY, He XF, Wang YX, et al. Warburg effect in colorectal cancer: the emerging roles in tumor microenvironment and therapeutic implications[J]. J Hematol Oncol, 2022, 15(1): 160. |
| [2] | Rabinowitz JD, Enerbäck S. Lactate: the ugly duckling of energy metabolism[J]. Nat Metab, 2020, 2(7): 566-571. |
| [3] | Hu Y, He ZL, Li ZJ, et al. Lactylation: the novel histone modification influence on gene expression, protein function, and disease[J]. Clin Epigenetics, 2024, 16(1): 72. |
| [4] | Arora R, Cao C, Kumar M, et al. Spatial transcriptomics reveals distinct and conserved tumor core and edge architectures that predict survival and targeted therapy response[J]. Nat Commun, 2023, 14(1): 5029. |
| [5] | Fan TF, Wang XN, Zhang S, et al. NUPR1 promotes the proliferation and metastasis of oral squamous cell carcinoma cells by activating TFE3-dependent autophagy[J]. Signal Transduct Target Ther, 2022, 7(1): 130. |
| [6] | Panzarella V, Pizzo G, Calvino F, et al. Diagnostic delay in oral squamous cell carcinoma: the role of cognitive and psychological variables[J]. Int J Oral Sci, 2014, 6(1): 39-45. |
| [7] | Ye L, Jiang Y, Zhang MM. Crosstalk between glucose metabolism, lactate production and immune response modulation[J]. Cytokine Growth Factor Rev, 2022, 68: 81-92. |
| [8] | Apostolova P, Pearce EL. Lactic acid and lactate: revisiting the physiological roles in the tumor mi-croenvironment[J]. Trends Immunol, 2022, 43(12): 969-977. |
| [9] | 葛演. 乳酸驱动PD-L1乳酸化修饰促进胃癌进展的机制研究[D]. 南京: 江苏大学, 2023. |
| Ge Y. Study on the mechanism of PD-L1 lactylation driven by lactate to promote gastric cancer progression[D]. Nanjing: Jiangsu University, 2023. | |
| [10] | Brooks GA. The science and translation of lactate shuttle theory[J]. Cell Metab, 2018, 27(4): 757-785. |
| [11] | 陈怡霖, 朱萱萱, 倪志明, 等. 乳酸及乳酸化修饰对骨代谢影响的研究进展[J]. 中国骨质疏松杂志, 2024, 30(10): 1493-1498. |
| Chen YL, Zhu XX, Ni ZM, et al. Advances in the study of the effects of lactic acid and lactation mo-dification on bone metabolism[J]. Chin J Osteop, 2024, 30(10): 1493-1498. | |
| [12] | Elhanani O, Ben-Uri R, Keren L. Spatial profiling technologies illuminate the tumor microenvironment[J]. Cancer Cell, 2023, 41(3): 404-420. |
| [13] | Jin MZ, Jin WL. The updated landscape of tumor microenvironment and drug repurposing[J]. Signal Transduct Target Ther, 2020, 5(1): 166. |
| [14] | Zheng Z, Ma XZ, Li HF. Circular RNA circMDM2 accelerates the glycolysis of oral squamous cell carcinoma by targeting miR-532-3p/HK2[J]. J Cell Mol Med, 2020, 24(13): 7531-7537. |
| [15] | Lin J, Liu G, Chen LD, et al. Targeting lactate-rela-ted cell cycle activities for cancer therapy[J]. Semin Cancer Biol, 2022, 86(Pt 3): 1231-1243. |
| [16] | Walenta S, Wetterling M, Lehrke M, et al. High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers[J]. Cancer Res, 2000, 60(4): 916-921. |
| [17] | Sun YQ, Chen Y, Zhao H, et al. Lactate-driven type Ⅰcollagen deposition facilitates cancer stem cell-like phenotype of head and neck squamous cell carcinoma[J]. iScience, 2024, 27(4): 109340. |
| [18] | Gao CY, Li JL, Shan BE. Research progress on the regulatory role of lactate and lactylation in tumor microenvironment[J]. Biochim Biophys Acta Rev Cancer, 2025, 1880(3): 189339. |
| [19] | Wu J, Hong Y, Wu T, et al. Stromal-epithelial lactate shuttle induced by tumor-derived interleukin-1β promotes cell proliferation in oral squamous cell carcinoma[J]. Int J Mol Med, 2018, 41(2): 687-696. |
| [20] | Martinez-Outschoorn U, Sotgia F, Lisanti MP. Tumor microenvironment and metabolic synergy in breast cancers: critical importance of mitochondrial fuels and function[J]. Semin Oncol, 2014, 41(2): 195-216. |
| [21] | Zhang SZ, Wang JJ, Chen Y, et al. CAFs-derived lactate enhances the cancer stemness through inhibi-ting the MST1 ubiquitination degradation in OSCC[J]. Cell Biosci, 2024, 14(1): 144. |
| [22] | Llibre A, Kucuk S, Gope A, et al. Lactate: a key re-gulator of the immune response[J]. Immunity, 2025, 58(3): 535-554. |
| [23] | Chen J, Huang ZY, Chen Y, et al. Lactate and lactylation in cancer[J]. Signal Transduct Target Ther, 2025, 10(1): 38. |
| [24] | Qian J, Gong ZC, Zhang YN, et al. Lactic acid promotes metastatic niche formation in bone metastasis of colorectal cancer[J]. Cell Commun Signal, 2021, 19(1): 9. |
| [25] | 周医雯, 姜伟, 朱海涛, 等. 乳酸在胰腺癌中的研究进展[J]. 中华胰腺病杂志, 2023, 23(2): 150-153. |
| Zhou YW, Jiang W, Zhu HT, et al. Research pro-gress on lactic acid in pancreatic cancer[J]. Chin J Pancreatol, 2023, 23(2): 150-153. | |
| [26] | 马丹宁, 魏泰, 韦金奇, 等. 乳酸对舌鳞癌细胞迁移和侵袭的影响及其机制初探[J]. 中华老年口腔医学杂志, 2024, 22(3): 129-133, 152. |
| Ma DN, Wei T, Wei JQ, et al. The effect of lactic acid on the migration and invasion ability of tongue squamous cell carcinoma cells and its preliminary mechanism investigation[J]. Chin J Geria Dent, 2024, 22(3): 129-133, 152. | |
| [27] | Jing FY, Zhu LJ, Zhang JY, et al. Multi-omics reveals lactylation-driven regulatory mechanisms promoting tumor progression in oral squamous cell carcinoma[J]. Genome Biol, 2024, 25(1): 272. |
| [28] | Zhong Q, Xiao XN, Qiu YJ, et al. Protein posttranslational modifications in health and diseases: functions, regulatory mechanisms, and therapeutic implications[J]. Med Comm, 2023, 4(3): e261. |
| [29] | Zhang D, Tang ZY, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779): 575-580. |
| [30] | Wan N, Wang N, Yu SQ, et al. Cyclic immonium ion of lactyllysine reveals widespread lactylation in the human proteome[J]. Nat Methods, 2022, 19(7): 854-864. |
| [31] | Zong Z, Ren J, Yang B, et al. Emerging roles of lysine lactyltransferases and lactylation[J]. Nat Cell Biol, 2025, 27(4): 563-574. |
| [32] | Wang NX, Wang WW, Wang XQ, et al. Histone lactylation boosts reparative gene activation post-myocardial infarction[J]. Circ Res, 2022, 131(11): 893-908. |
| [33] | Zhu RX, Ye XL, Lu XT, et al. ACSS2 acts as a lactyl-CoA synthetase and couples KAT2A to function as a lactyltransferase for histone lactylation and tumor immune evasion[J]. Cell Metab, 2025, 37(2): 361-376.e7. |
| [34] | Zhai GJ, Niu ZP, Jiang ZX, et al. DPF2 reads histone lactylation to drive transcription and tumorige-nesis[J]. Proc Natl Acad Sci U S A, 2024, 121(50): e2421496121. |
| [35] | Nuñez R, Sidlowski PFW, Steen EA, et al. The TRIM33 bromodomain recognizes histone lysine lactylation[J]. ACS Chem Biol, 2024, 19(12): 2418-2428. |
| [36] | Fan ZM, Liu ZY, Zhang N, et al. Identification of SIRT3 as an eraser of H4K16la[J]. iScience, 2023, 26(10): 107757. |
| [37] | Moreno-Yruela C, Zhang D, Wei W, et al. ClassⅠ histone deacetylases (HDAC1-3) are histone lysine delactylases[J]. Sci Adv, 2022, 8(3): eabi6696. |
| [38] | Li HY, Liu C, Li R, et al. AARS1 and AARS2 sense L-lactate to regulate cGAS as global lysine lactyltransferases[J]. Nature, 2024, 634(8036): 1229-1237. |
| [39] | Zong Z, Xie F, Wang S, et al. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransfe-rase that lactylates p53 and contributes to tumorigenesis[J]. Cell, 2024, 187(10): 2375-2392.e33. |
| [40] | Hong H, Han HX, Wang L, et al. ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway[J]. Cell Death Differ, 2025, 32(4): 613-631. |
| [41] | Li WH, Zhou C, Yu L, et al. Tumor-derived lactate promotes resistance to bevacizumab treatment by facilitating autophagy enhancer protein RUBCNL expression through histone H3 lysine 18 lactylation (H3K18la) in colorectal cancer[J]. Autophagy, 2024, 20(1): 114-130. |
| [42] | Qiao YF, Liu YJ, Ran R, et al. Lactate metabolism and lactylation in breast cancer: mechanisms and implications[J]. Cancer Metastasis Rev, 2025, 44(2): 48. |
| [43] | Tian QY, Li JJ, Wu B, et al. APP lysine 612 lactylation ameliorates amyloid pathology and memory decline in Alzheimer’s disease[J]. J Clin Invest, 2025, 135(1): e184656. |
| [44] | Liu M, Yang Q, Zuo HY, et al. Dynamic patterns of histone lactylation during early tooth development in mice[J]. J Mol Histol, 2023, 54(6): 665-673. |
| [45] | Zhai MR, Cui SY, Li L, et al. Mechanical force modulates alveolar bone marrow mesenchymal cells characteristics for bone remodeling during orthodontic tooth movement through lactate production[J]. Cells, 2022, 11(23): 3724. |
| [46] | Wu Y, Gong P. Scopolamine regulates the osteo-genic differentiation of human periodontal liga-ment stem cells through lactylation modification of RUNX2 protein[J]. Pharmacol Res Perspect, 2024, 12(1): e1169. |
| [47] | Li ZY, Gong T, Wu QR, et al. Lysine lactylation re-gulates metabolic pathways and biofilm formation in Streptococcus mutans [J]. Sci Signal, 2023, 16(801): eadg1849. |
| [48] | Meng MY, Zhao XG, Zheng XY, et al. Lactate inhi-bits mouse embryonic palatal mesenchyme cells chondrogenesis through AKT-PKM2 axis[J]. BMC Oral Health, 2025, 25(1): 1289. |
| [49] | Song F, Hou C, Huang YZ, et al. Lactylome analyses suggest systematic lysine-lactylated substrates in oral squamous cell carcinoma under normoxia and hypoxia[J]. Cell Signal, 2024, 120: 111228. |
| [50] | Wang RJ, Li CW, Cheng ZY, et al. H3K9 lactylation in malignant cells facilitates CD8+ T cell dysfunction and poor immunotherapy response[J]. Cell Rep, 2024, 43(11): 114957. |
| [51] | Miao SH, Lin L, Long MH, et al. H3 lysine 18 lactylation-mediated RRAS2 facilitates migration and invasion of head and neck squamous cell carcinoma[J]. Sci Rep, 2025, 15(1): 21282. |
| [52] | Ren HW, Tang YW, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling[J]. Nat Metab, 2025, 7(4): 647-664. |
| [53] | Faubert B, Solmonson A, DeBerardinis RJ. Metabo-lic reprogramming and cancer progression[J]. Scien-ce, 2020, 368(6487): eaaw5473. |
| [54] | Pan LH, Feng F, Wu JQ, et al. Demethylzeylasteral targets lactate by inhibiting histone lactylation to suppress the tumorigenicity of liver cancer stem cells[J]. Pharmacol Res, 2022, 181: 106270. |
| [55] | Wang T, Ye Z, Li Z, et al. Lactate-induced protein lactylation: a bridge between epigenetics and metabolic reprogramming in cancer[J]. Cell Prolif, 2023, 56(10): e13478. |
| [56] | Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m6A modification promotes immunosuppression of tumor-infiltrating myeloid cells[J]. Mol Cell, 2022, 82(9): 1660-1677.e10. |
| [57] | Chen S, Huang GZ, Guo ZY, et al. Tumor-associa-ted Schwann cells promote salivary adenoid cystic carcinoma stem-like reprogramming via IGF2/IGF1-R induced histone H3 lysine 18 lactylation[J]. Cancer Lett, 2025, 628: 217847. |
| [58] | Cai HS, Li JX, Zhang YD, et al. LDHA promotes oral squamous cell carcinoma progression through facilitating glycolysis and epithelial-mesenchymal transition[J]. Front Oncol, 2019, 9: 1446. |
| [59] | Cui YM, Liu JW, Wang X, et al. Baicalin attenuates the immune escape of oral squamous cell carcinoma by reducing lactate accumulation in tumor microenvironment[J]. J Adv Res, 2025, 77: 721-732. |
| [60] | Simões-Sousa S, Granja S, Pinheiro C, et al. Prognostic significance of monocarboxylate transporter expression in oral cavity tumors[J]. Cell Cycle, 2016, 15(14): 1865-1873. |
| [61] | 汪婷婷, 何永文. 单羧酸转运蛋白家族介导乳酸转运在肿瘤发生发展中的作用[J]. 中国肿瘤临床, 2020, 47(7): 354-358. |
| Wang TT, He YW. Roles of monocarboxylate transporter-mediated lactate transport in tumors[J]. Chin J Clin Oncol, 2020, 47(7): 354-358. | |
| [62] | Jin Z, Yun L, Cheng P. Tanshinone I reprograms glycolysis metabolism to regulate histone H3 lysine 18 lactylation (H3K18la) and inhibits cancer cell grow-th in ovarian cancer[J]. Int J Biol Macromol, 2025, 291: 139072. |
| [63] | Ouyang F, Li YL, Wang HM, et al. Aloe emodin alleviates radiation-induced heart disease via bloc-king P4HB lactylation and mitigating kynurenine metabolic disruption[J]. Adv Sci, 2024, 11(47): e2406026. |
| [64] | Xiang TY, Wang XJ, Huang SJ, et al. Inhibition of PKM2 by shikonin impedes TGF-β1 expression by repressing histone lactylation to alleviate renal fibrosis[J]. Phytomedicine, 2025, 136: 156324. |
| [65] | Chen QJ, Yang BH, Liu XC, et al. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents[J]. Theranostics, 2022, 12(11): 4935-4948. |
|
||