Int J Stomatol ›› 2025, Vol. 52 ›› Issue (4): 473-483.doi: 10.7518/gjkq.2025062
• Original Articles • Previous Articles Next Articles
Manman Yao(),Yongle Qiu(
),Tiejun Liu,Yueting Lu,Hualin Lu,Hongyue Shang,Bo Dong
CLC Number:
1 | Coletta RD, Yeudall WA, Salo T. Grand challenges in oral cancers[J]. Front Oral Health, 2020, 1: 3. |
2 | Romano A, Di Stasio D, Petruzzi M, et al. Noninvasive imaging methods to improve the diagnosis of oral carcinoma and its precursors: state of the art and proposal of a three-step diagnostic process[J]. Cancers (Basel), 2021, 13(12): 2864. |
3 | Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine[J]. Wiley Interdiscip Rev RNA, 2021, 12(6): e1662. |
4 | Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16(3): 203-222. |
5 | Mirzaei S, Baghaei K, Parivar K, et al. The expression level changes of microRNAs 200a/205 in the development of invasive properties in gastric cancer cells through epithelial-mesenchymal transition[J]. Eur J Pharmacol, 2019, 857: 172426. |
6 | Xue L, Yu X, Jiang X, et al. TM4SF1 promotes the self-renewal of esophageal cancer stem-like cells and is regulated by miR-141[J]. Oncotarget, 2017, 8(12): 19274-19284. |
7 | Dong H, Weng C, Bai R, et al. The regulatory network of miR-141 in the inhibition of angiogenesis[J]. Angiogenesis, 2019, 22(2): 251-262. |
8 | Song Y, Li L, Ou Y, et al. Identification of genomic alterations in oesophageal squamous cell cancer[J]. Nature, 2014, 509(7498): 91-95. |
9 | Li CX, Su Y, Wang ZY, et al. A PRISMA meta-ana-lysis for diagnostic value of microRNA-21 in head and neck squamous cell carcinoma along with bioinformatics research[J]. Oral Maxillofac Surg, 2024, 28(2): 739-752. |
10 | Kiran K, Chowdhury N, Singh A, et al. The relationship of grade, stage and tobacco usage in head and neck squamous cell carcinoma with p53, PIK3CA and microRNA profiles[J]. Cureus, 2024, 16(2): e54737. |
11 | Banwait JK, Bastola DR. Contribution of bioinformatics prediction in microRNA-based cancer therapeutics[J]. Adv Drug Deliv Rev, 2015, 81: 94-103. |
12 | Chen S, Zhang J, Chen Q, et al. MicroRNA-200a and microRNA-141 have a synergetic effect on the suppression of epithelial-mesenchymal transition in liver cancer by targeting STAT4[J]. Oncol Lett, 2021, 21(2): 137. |
13 | Anderson K, Ryan N, Volpedo G, et al. Immune suppression mediated by STAT4 deficiency promotes lymphatic metastasis in HNSCC[J]. Front Immunol, 2020, 10: 3095. |
14 | Brozovic A, Duran GE, Wang YC, et al. The miR-200 family differentially regulates sensitivity to paclitaxel and carboplatin in human ovarian carcinoma OVCAR-3 and MES-OV cells[J]. Mol Oncol, 2015, 9(8): 1678-1693. |
15 | Li Y, Wang J, Chen W, et al. Overexpression of STAT4 under hypoxia promotes EMT through miR-200a/STAT4 signal pathway[J]. Life Sci, 2021, 273: 119263. |
16 | Tan Y, Wang Z, Xu M, et al. Oral squamous cell carcinomas: state of the field and emerging directions[J]. Int J Oral Sci, 2023, 15(1): 44. |
17 | Chai AWY, Lim KP, Cheong SC. Translational genomics and recent advances in oral squamous cell carcinoma[J]. Semin Cancer Biol, 2020, 61: 71-83. |
18 | Berindan-Neagoe I, Monroig Pdel C, Pasculli B, et al. MicroRNAome genome: a treasure for cancer diagnosis and therapy[J]. CA Cancer J Clin, 2014, 64(5): 311-336. |
19 | Lee JS, Ahn YH, Won HS, et al. Prognostic role of the microRNA-200 family in various carcinomas: a systematic review and meta-analysis[J]. Biomed Res Int, 2017, 2017: 1928021. |
20 | Zhang Z, Li H, Jiang S, et al. A survey and evaluation of Web-based tools/databases for variant analysis of TCGA data[J]. Brief Bioinform, 2019, 20(4): 1524-1541. |
21 | Cong Y, Baimanov D, Zhou Y, et al. Penetration and translocation of functional inorganic nanomaterials into biological barriers[J]. Adv Drug Deliv Rev, 2022, 191: 114615. |
22 | Zhang Y, Zhang Y, Ma C, et al. Gelatin nanoparticles transport DNA probes for detection and ima-ging of telomerase and microRNA in living cells[J]. Talanta, 2020, 218: 121100. |
23 | Zhang CY, Yang CQ, Chen Q, et al. miR-194-loa-ded gelatin nanospheres target MEF2C to suppress muscle atrophy in a mechanical unloading model[J]. Mol Pharm, 2021, 18(8): 2959-2973. |
24 | Najafi S, Majidpoor J, Mortezaee K. Extracellular vesicle-based drug delivery in cancer immunotherapy[J]. Drug Deliv Transl Res, 2023, 13(11): 2790-2806. |
25 | Elewaily MI, Elsergany AR. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential[J]. J Cancer Res Clin Oncol, 2021, 147(3): 637-648. |
26 | Ngu A, Wang S, Wang H, et al. Milk exosomes in nutrition and drug delivery[J]. Am J Physiol Cell Physiol, 2022, 322(5): C865-C874. |
27 | Hofmann L, Waizenegger M, Röth R, et al. Treatment dependent impact of plasma-derived exosomes from head and neck cancer patients on the epithelial-to-mesenchymal transition[J]. Front Oncol, 2023, 12: 1043199. |
28 | Mirzaei S, Gholami MH, Aghdaei HA, et al. Exosome-mediated miR-200a delivery into TGF-β-trea-ted AGS cells abolished epithelial-mesenchymal transition with normalization of ZEB1, vimentin and Snail1 expression[J]. Environ Res, 2023, 231(Pt 1): 116115. |
29 | Mathieu M, Névo N, Jouve M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9[J]. Nat Commun, 2021, 12(1): 4389. |
30 | Bose A, Ghosh D, Pal S, et al. Interferon alpha2b augments suppressed immune functions in tobacco-related head and neck squamous cell carcinoma patients by modulating cytokine signaling[J]. Oral Oncol, 2006, 42(2): 161-171. |