Int J Stomatol ›› 2025, Vol. 52 ›› Issue (4): 473-483.doi: 10.7518/gjkq.2025062

• Original Articles • Previous Articles     Next Articles

Role of mircoRNA200a/141-signal transduction and transcriptional activator 4 axis in the progression of oral squamous cell carcinoma

Manman Yao(),Yongle Qiu(),Tiejun Liu,Yueting Lu,Hualin Lu,Hongyue Shang,Bo Dong   

  1. Dept. of Stomatology, the Fourth Hospital, Hebei Medical University, Shijiazhuang 050000, China
  • Received:2024-06-10 Revised:2025-01-08 Online:2025-07-01 Published:2025-06-20
  • Contact: Yongle Qiu E-mail:49103567@hebmu.edu.cn;qiuyongle@163.com
  • Supported by:
    Project of the Hebei Provincial Administration of Traditional Chinese Medicine(2024050);Hebei Provincial Natural Science Foundation General Project(H2024206476);Central Government Guides Local Funds Supported by S&T Program of Hebei(246Z7762G)

Abstract:

Objective This study aimed to explore the expression and clinical significance of mircoRNA (miRNA) 200a/141 and signal transducer and activator of transcription 4 (STAT4) in oral squamous cell carcinoma (OSCC) and construct a prognostic model to explore its feasibility as a potential therapeutic target. In vitro experiments verified that bionic gelatin exosome particles delivered mi-RNA200a/141 to regulate STAT4. This study also aimed to evaluate the protective capacity and anticancer effects of nucleic acids at the cellular and molecular levels of OSCC. Methods OSCC-related miRNA-sequencing and messenger RNA-sequencing data were downloaded from The Cancer Genome Atlas database. Data analysis was performed using R language to assess the expression levels and clinical correlation of miRNA200a/141 with STAT4. Biomimetic gelatin exosome nanoparticles (GNP-EXO-mi-RNA200a/141) loaded with miRNA were prepared, and Transwell migration assay, cell scratch assay, and methyl thiazolyl tetrazolium assay were performed to evaluate the effect of nanoparticles on SCC25 cells. The effects of the nanoparticles on STAT4 expression in SCC25 cells were examined using quantitative polymerase chain reaction and Western blot. Results The expression of miRNA200a/141 was significantly reduced in OSCC tissues, whereas that of its target STAT 4 increased, which was inversely correlated. The prepared GNP-EXO-miRNA200a/141 nanoparticles showed good size distribution and stability. In cell experiments, GNP-EXO-miRNA200a/141 significantly inhibited the proliferation and migration of SCC25 cells and significantly downregulated STAT4 expression. Conclusion miRNA200a/141 plays an important role in OSCC by regulating STAT4, and it is expected to be a potential molecular marker and therapeutic target for the diagnosis, treatment, and prognosis of OSCC.

Key words: oral squamous cell carcinoma, mircoRNA200a/141, signal transducer and activator of transcription 4, exosomes, gelatin nanoparticles

CLC Number: 

  • R782

TrendMD: 

Fig 1

Preparation model of bionic gelatin EXO particles"

Tab 1

The primer sequence"

基因引物
STAT4

正向引物,5’-AGCCATCTCGGAGGAATA-3’

反向引物,5’-CAGACAACCGGCCTTTAT-3’

GAPDH

正向引物,5’-CGTGGGCCGCCCTAGGCACCA-3’

反向引物,5’-TTGGCTTAGGGTTCAGGGGGG-3’

miRNA-200a

正向引物,5’-TAACACTGTCTGGTAACGATGT-3’

反向引物,5’-ATCGTTACCAGACAGTGTTATT-3’

miRNA-141

正向引物,5’-ACACTCCAGCTGGTAACACTGTCTGGTAA-3’

反向引物,5’-CTCAACTGGTGTCGTGGAGTCGGCA-ATTCAGTT GAGCCATCTTT-3’

Fig 2

Analysis of single gene differences"

Fig 3

Correlation between miRNA200a/141 and STAT4"

Fig 4

Survival analysis of miRNA200a/141 and STAT4 expression and prognosis in patients with OSCC"

Tab 2

Single factor and multiple factor analysis of OSCC prognosis"

特征例数单因素分析多因素分析
风险比(95%置信区间)P风险比(95%置信区间)P
年龄/岁<5044参照
≥502151.186(0.691~2.038)0.536
性别176参照
831.209(0.805~1.815)0.360
分期Ⅰ期和Ⅱ期64参照
Ⅲ期和Ⅳ期1951.776(1.086~2.905)0.022
T分期T1~T2111参照参照
T3~T41482.269(1.464~3.517)<0.0011.863(1.201~2.891)0.006
N分期N0104参照参照
N1460.526(0.243~1.137)0.1020.574(0.265~1.241)0.158
N2~N31091.847(1.206~2.829)0.0051.451(0.943~2.232)0.090
miRNA-200a高表达82参照
低表达1771.916(1.193~3.076)0.007
miRNA-141高表达86参照参照
低表达1732.298(1.377~3.835)0.0012.077(1.240~3.478)0.005
STAT4低表达153参照参照
高表达1063.016 (2.017~4.511)<0.0012.715(1.809~4.075)<0.001

Fig 5

The characteristic of GNP-EXO and GNP-EXO-miRNA200a/141"

Tab 3

Characterization of nanoparticles"

组别粒径/nmPDI表面电位/mV
GNP109.1±12.10.193±0.05024.53±0.70
GNP-EXO123.1±12.30.216±0.080-11.00±1.20
GNP-EXO-miRNA200a/141127.3±14.00.214±0.030-10.20±0.70

Fig 6

Inhibitory effect of GNP-EXO-miRNA200a/141 nanocomplexes on SCC25 cell growth"

Fig 7

Transwell assay results"

Fig 8

Cell scratch assay results"

Fig 9

STAT4 protein expression in SCC25 cells"

1 Coletta RD, Yeudall WA, Salo T. Grand challenges in oral cancers[J]. Front Oral Health, 2020, 1: 3.
2 Romano A, Di Stasio D, Petruzzi M, et al. Noninvasive imaging methods to improve the diagnosis of oral carcinoma and its precursors: state of the art and proposal of a three-step diagnostic process[J]. Cancers (Basel), 2021, 13(12): 2864.
3 Sempere LF, Azmi AS, Moore A. microRNA-based diagnostic and therapeutic applications in cancer medicine[J]. Wiley Interdiscip Rev RNA, 2021, 12(6): e1662.
4 Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases[J]. Nat Rev Drug Discov, 2017, 16(3): 203-222.
5 Mirzaei S, Baghaei K, Parivar K, et al. The expression level changes of microRNAs 200a/205 in the development of invasive properties in gastric cancer cells through epithelial-mesenchymal transition[J]. Eur J Pharmacol, 2019, 857: 172426.
6 Xue L, Yu X, Jiang X, et al. TM4SF1 promotes the self-renewal of esophageal cancer stem-like cells and is regulated by miR-141[J]. Oncotarget, 2017, 8(12): 19274-19284.
7 Dong H, Weng C, Bai R, et al. The regulatory network of miR-141 in the inhibition of angiogenesis[J]. Angiogenesis, 2019, 22(2): 251-262.
8 Song Y, Li L, Ou Y, et al. Identification of genomic alterations in oesophageal squamous cell cancer[J]. Nature, 2014, 509(7498): 91-95.
9 Li CX, Su Y, Wang ZY, et al. A PRISMA meta-ana-lysis for diagnostic value of microRNA-21 in head and neck squamous cell carcinoma along with bioinformatics research[J]. Oral Maxillofac Surg, 2024, 28(2): 739-752.
10 Kiran K, Chowdhury N, Singh A, et al. The relationship of grade, stage and tobacco usage in head and neck squamous cell carcinoma with p53, PIK3CA and microRNA profiles[J]. Cureus, 2024, 16(2): e54737.
11 Banwait JK, Bastola DR. Contribution of bioinformatics prediction in microRNA-based cancer therapeutics[J]. Adv Drug Deliv Rev, 2015, 81: 94-103.
12 Chen S, Zhang J, Chen Q, et al. MicroRNA-200a and microRNA-141 have a synergetic effect on the suppression of epithelial-mesenchymal transition in liver cancer by targeting STAT4[J]. Oncol Lett, 2021, 21(2): 137.
13 Anderson K, Ryan N, Volpedo G, et al. Immune suppression mediated by STAT4 deficiency promotes lymphatic metastasis in HNSCC[J]. Front Immunol, 2020, 10: 3095.
14 Brozovic A, Duran GE, Wang YC, et al. The miR-200 family differentially regulates sensitivity to paclitaxel and carboplatin in human ovarian carcinoma OVCAR-3 and MES-OV cells[J]. Mol Oncol, 2015, 9(8): 1678-1693.
15 Li Y, Wang J, Chen W, et al. Overexpression of STAT4 under hypoxia promotes EMT through miR-200a/STAT4 signal pathway[J]. Life Sci, 2021, 273: 119263.
16 Tan Y, Wang Z, Xu M, et al. Oral squamous cell carcinomas: state of the field and emerging directions[J]. Int J Oral Sci, 2023, 15(1): 44.
17 Chai AWY, Lim KP, Cheong SC. Translational genomics and recent advances in oral squamous cell carcinoma[J]. Semin Cancer Biol, 2020, 61: 71-83.
18 Berindan-Neagoe I, Monroig Pdel C, Pasculli B, et al. MicroRNAome genome: a treasure for cancer diagnosis and therapy[J]. CA Cancer J Clin, 2014, 64(5): 311-336.
19 Lee JS, Ahn YH, Won HS, et al. Prognostic role of the microRNA-200 family in various carcinomas: a systematic review and meta-analysis[J]. Biomed Res Int, 2017, 2017: 1928021.
20 Zhang Z, Li H, Jiang S, et al. A survey and evaluation of Web-based tools/databases for variant analysis of TCGA data[J]. Brief Bioinform, 2019, 20(4): 1524-1541.
21 Cong Y, Baimanov D, Zhou Y, et al. Penetration and translocation of functional inorganic nanomaterials into biological barriers[J]. Adv Drug Deliv Rev, 2022, 191: 114615.
22 Zhang Y, Zhang Y, Ma C, et al. Gelatin nanoparticles transport DNA probes for detection and ima-ging of telomerase and microRNA in living cells[J]. Talanta, 2020, 218: 121100.
23 Zhang CY, Yang CQ, Chen Q, et al. miR-194-loa-ded gelatin nanospheres target MEF2C to suppress muscle atrophy in a mechanical unloading model[J]. Mol Pharm, 2021, 18(8): 2959-2973.
24 Najafi S, Majidpoor J, Mortezaee K. Extracellular vesicle-based drug delivery in cancer immunotherapy[J]. Drug Deliv Transl Res, 2023, 13(11): 2790-2806.
25 Elewaily MI, Elsergany AR. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential[J]. J Cancer Res Clin Oncol, 2021, 147(3): 637-648.
26 Ngu A, Wang S, Wang H, et al. Milk exosomes in nutrition and drug delivery[J]. Am J Physiol Cell Physiol, 2022, 322(5): C865-C874.
27 Hofmann L, Waizenegger M, Röth R, et al. Treatment dependent impact of plasma-derived exosomes from head and neck cancer patients on the epithelial-to-mesenchymal transition[J]. Front Oncol, 2023, 12: 1043199.
28 Mirzaei S, Gholami MH, Aghdaei HA, et al. Exosome-mediated miR-200a delivery into TGF-β-trea-ted AGS cells abolished epithelial-mesenchymal transition with normalization of ZEB1, vimentin and Snail1 expression[J]. Environ Res, 2023, 231(Pt 1): 116115.
29 Mathieu M, Névo N, Jouve M, et al. Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9[J]. Nat Commun, 2021, 12(1): 4389.
30 Bose A, Ghosh D, Pal S, et al. Interferon alpha2b augments suppressed immune functions in tobacco-related head and neck squamous cell carcinoma patients by modulating cytokine signaling[J]. Oral Oncol, 2006, 42(2): 161-171.
[1] Qian Wang,Hui Peng,Liyu Zhang,Zongcheng Yang,Yuqi Wang,Yu Pan,Yu Zhou. Application of radiomics in cervical lymph node metastasis of oral squamous cell carcinoma [J]. Int J Stomatol, 2025, 52(4): 507-513.
[2] Yijie Li,Zhenying Yuan,Ming Li. Expression and function of branch-chain amino acid transaminase 1 in oral squamous cell carcinoma [J]. Int J Stomatol, 2025, 52(3): 358-365.
[3] Maikeliya Aikepaer,Maimaitituxun Tuerdi. Progress of research on the application of indocyanine green fluorescence imaging technology in the surgical treatment of oral squamous cell carcinoma [J]. Int J Stomatol, 2025, 52(3): 405-410.
[4] Yanbei Lu,Zhengjuan Li,Lei Lei,Jingjing Luo. Research progress on phosphatidylinositol 3-kinase-mediated radioresistance in oral squamous cell carcinoma [J]. Int J Stomatol, 2025, 52(2): 246-256.
[5] Jingzhe Li, Suxin Zhang. Progress in research on phosphoinositide 3-kinase/protein kinase B pathway inhibitors in oral squamous cell carcinoma [J]. Int J Stomatol, 2025, 52(1): 34-41.
[6] Bingzhi Li, Yunkun Liu, Wenxuan Wang, Zeyu Hou, Jinru Tang, Longjiang Li. Research progress on perineural invasion of oral squamous cell carcinoma [J]. Int J Stomatol, 2024, 51(3): 362-367.
[7] Wenxuan Wang,Yunkun Liu,Bingzhi Li,Nengwen Huang,Zeyu Hou,Jinru Tang,Longjiang Li. Role of advanced glycosylation end-products and their receptors in the progression and treatment of oral squamous cell carcinoma [J]. Int J Stomatol, 2024, 51(2): 208-216.
[8] Zhou Jinkuo,Zhang Jinhong,Shi Xiaojing,Liu Guangshun,Jiang Lei,Liu Qianfeng. Influences of long noncoding RNA small nucleolar RNA host gene 22 on the cell proliferation, invasion and migration of oral squamous carcinoma cells by regulating microRNA-27b-3p [J]. Int J Stomatol, 2024, 51(1): 52-59.
[9] Li Liheng,Wang Rui,Wang Xiaoming,Zhang Zhiyi,Zhang Xuan,An Feng,Wang Qin,Zhang Fan. Effects of circular RNA hsa_circ_0085576 on cell migration and invasion of oral squamous cell carcinoma by regulating the microRNA-498/B-cell-specific Moloney murine leukemia virus integration site 1 axis [J]. Int J Stomatol, 2024, 51(1): 60-67.
[10] Wu Jiamin,Xia Bin,Yang Hefeng,Xu Biao.. Research progress on cancer-associated fibroblasts in the tumor microenvironment of oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(6): 711-717.
[11] Liu Jianglong, Tuerdi Maimaitituxun. Progress of contrast-enhanced ultrasound in the diagnosis of cervical lymph node metastasis from oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(5): 514-520.
[12] Sheng Nanning,Wang Jue,Nan Xinrong. Research progress on mechanism and treatment of sex-determining region Y box 9 in oral squamous cell carcinoma [J]. Int J Stomatol, 2023, 50(3): 314-320.
[13] Li Tan,Liang Xin-hua.. Role of discoidin domain receptor 1 in the regulation of malignant tumor progression and therapy [J]. Int J Stomatol, 2023, 50(2): 230-236.
[14] Zhao Zhuoping,Xin Pengfei,Gao Yang,Zhang Caifeng,Zhang Kuanshou,Liu Qingmei. Research progress on the use of photothermal therapy to treat oral squamous cell carcinoma [J]. Int J Stomatol, 2022, 49(4): 462-470.
[15] Jiang Han,Shen Yingqiang,Chen Qianming. Experimental study of muscarinic receptors on the biological behavior of oral squamous cell carcinoma through Yes related protein signal [J]. Int J Stomatol, 2022, 49(2): 138-143.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .