Int J Stomatol ›› 2025, Vol. 52 ›› Issue (3): 281-295.doi: 10.7518/gjkq.2025060

• Expert Forum •    

Surface modification of zirconia implants to promote bone integration

Jie Yu1(),Jinsong Liu2()   

  1. 1.Dept. of General Dentistry, Institute of Stomatology, Affiliated Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
    2.Dept. of Prosthodontics, Institute of Stomatology, Affiliated Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
  • Received:2024-10-12 Revised:2025-02-02 Online:2025-05-01 Published:2025-04-30
  • Contact: Jinsong Liu E-mail:735385443@qq.com;jinsong0719@wmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(80220039)

Abstract:

Zirconia implants are considered as promising alternatives to titanium implants because of their tooth-like color that can simulate the appearance of natural teeth, appropriate mechanical properties, and biocompatibility, which reduce peri-implant inflammatory reactions. However, an untreated zirconia surface is bio-inert, which results in limited osseointegration compared with titanium. Considering that surface characteristics play an essential role in the adsorption of protein, adhesion, proliferation, and differentiation of osteogenesis-related cells, numerous surface modifications are applied to enhance the surface bioactivity of zirconia. In this review, various surface modifications of zirconia implants and their effects on osseointegration were comprehensively summarized. Meanwhile, the advantages and disadvantages of se-veral surface modifications were discussed.

Key words: surface modification, osseointegration, zirconia, dental implant

CLC Number: 

  • R783.1

TrendMD: 

Tab 1

Surface morphology modification"

方法特征参考文献
喷砂改善粗糙度,低成本,颗粒污染,造成微裂纹[18-25]
酸蚀清除杂质,改变化学成分[28-37]
喷砂-酸蚀提高粗糙度,清除杂质[38-46]
SIE纳米多孔,可选择性[47-50]
激光光纤激光一种稳定的高能光束,波长短,没有空间波动[59-62]
CO2激光低频率和小光子能量,表面氧化和易碎边缘[63-66]
YAG激光更短的波长聚焦在更小的光斑上[67-70]
飞秒激光增加表面粗糙度,减少残余元素的存在[71-76]

Tab 2

Surface chemical modification"

方法特征参考文献
紫外光处理增强表面亲水性,降低表面碳含量[77-84]
自组装自主过程,易于设置,低成本,良好的细胞反应[85-87]
生物功能化将生物分子(蛋白质、酶、肽等)接枝于表面[88-94]
离子注入镁涂层改善细胞行为[95-101]

Tab 3

Zirconia surface coating"

涂层材料特征参考文献
生物玻璃优异的生物活性和骨导电性[104-109]
磷酸钙减轻骨吸收,增加初始骨结合强度[110-119]
二氧化硅涂层各向同性微图案,诱导成骨细胞早期排列[120-121]
纳米结构涂层提供纳米级的粗糙度,促进整合素聚集,药物递送[122-127]

Tab 4

Roughness and BIC values under different surface modifications of zirconia"

表面处理

出版

年份

动物

模型

种植位置随访/周表面粗糙度/μm平均BIC/%参考文献
项目测量值
机械加工2019大鼠上颌骨3Sa3.2358.10[46]
机械加工2016小型猪

上颌骨

下颌骨

16

16

Ra0.18

62.4

66.9

[37]

机械加工

粗加工

等离子体处理

粗等离子体处理

2014胫骨4Ra

0.54

1.98

0.54

1.99

58.26

56.93

70.87

72.27

[132]
机械加工2012颅骨1267.1[17]
机械加工2010胫骨626[16]
粗加工2009股骨/胫骨3Ra1.2495[109]

机械加工

粗加工

2009大鼠股骨4Ra

0.13

0.36

46.6

59.4

[133]
机械加工2008骨盆875[134]
喷砂2017小型猪下颌骨1246[10]
喷砂2012股骨1241.35[24]
喷砂2012小型猪前颅底16Sa

0.3

1.7

3.0

61.4

79.3

48.4

[19]
酸蚀2017小型猪下颌骨1261[10]
酸蚀2016小型猪

上颌骨

下颌骨

16

16

Ra0.59

88.8

92.5

[44]
喷砂-酸蚀2019大鼠上颌骨3Sa351.8080.39[46]
喷砂-酸蚀2016小型猪下颌骨8Ra0.2586.24[45]
喷砂-酸蚀2013大鼠股骨4Ra0.9533.5[44]
SIE2013股骨675.01[47]

垂直光纤激光

水平光纤激光

垂直YVO4激光

水平YVO4激光

2013大鼠胫骨4Sa

1.84

1.84

1.44

1.44

64.9

49

39.8

17.5

[60]
YAG激光2014大鼠胫骨4Sa3.3333.92[70]
飞秒激光2014胫骨447.5[53]
飞秒激光2014下颌骨12.8

未加载57.6

即刻负载65.0

[55]
飞秒激光2013下颌骨12Sa8.9

未加载48

即刻负载78

[56]
激光改性2012股骨1243.86[24]
紫外光2019大鼠上颌骨3Sa3.0950.32[46]
喷砂酸蚀+紫外光2019大鼠上颌骨3Sa32285.87[46]

羟磷灰石涂层(浸渍)

羟磷灰石涂层(溅射)

2009股骨/胫骨395[109]

微结构

纳米表面改性磷酸钙

纳米表面改性磷酸钙

2009股骨6Ra

1.0

1.0

1.0

68.6

64.5

69.7

[47]
RKKP2002大鼠股骨8.5Ra0.3774[107]

Tab 5

Advantages and disadvantages of zirconia surface modification"

表面改性优点缺点
喷砂微粗糙度,氧化锆表面均匀、温和的各向异性磨损颗粒污染,微裂纹与相变
酸蚀均匀粗糙度,消除杂质改变化学成分,降低抗弯强度
喷砂-酸蚀提高粗糙度,消除杂质不可控性,污染
SIE表面化学性质保持不变,纳米尺度和微观粗糙度操作复杂,孔隙直径不受控制
光纤激光稳定高能光束波长短,无空间波动
CO2激光低频率、小光子能量表面氧化和边缘脆弱
YAG激光波长较短聚焦于较小的光斑
飞秒激光可以得到具有规则几何形状的微槽,精度高、损伤小基底损坏,造成氧化锆老化
紫外光处理将氧化锆表面由疏水性转变为亲水性改变机械性能和变色
自组装易于设置,产生革命性新成果的潜力巨大潜在毒性,生物学效应不明确
生物功能化接枝生物分子能增强氧化锆的生物活性生物分子与氧化锆表面的黏附力较弱
离子注入高纯度、低损伤基底损坏,表面污染
生物玻璃涂层可严格控制孔隙率形成裂纹,界面附着力不足
磷酸钙涂层与骨头相似的矿物成分涂层分离
二氧化硅涂层可得到各向同性的微图案结构涂层分离,影响表面硅烷密度
纳米结构涂层可获得纳米级的粗糙度,药物递送涂层与基底的附着力较弱
1 Sivaraman K, Chopra A, Narayan AI, et al. Is zirconia a viable alternative to titanium for oral implant? A critical review[J]. J Prosthodont Res, 2018, 62(2): 121-133.
2 Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications[J]. J Dent, 2007, 35(11): 819-826.
3 Cionca N, Hashim D, Mombelli A. Zirconia dental implants: where are we now, and where are we hea-ding[J]. Periodontol 2000, 2017, 73(1): 241-258.
4 Piconi C, Maccauro G. Zirconia as a ceramic biomaterial[J]. Biomaterials, 1999, 20(1): 1-25.
5 Yin L, Nakanishi Y, Alao AR, et al. A review of engineered zirconia surfaces in biomedical applications[J]. Procedia CIRP, 2017, 65: 284-290.
6 Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions[J]. Periodontol 2000, 2017, 73(1): 22-40.
7 Pieralli S, Kohal RJ, Lopez Hernandez E, et al. Osseointegration of zirconia dental implants in animal investigations: a systematic review and meta-analysis[J]. Dent Mater, 2018, 34(2): 171-182.
8 Hafezeqoran A, Koodaryan R. Effect of zirconia dental implant surfaces on bone integration: a systematic review and meta-analysis[J]. Biomed Res Int, 2017, 2017: 9246721.
9 Depprich R, Zipprich H, Ommerborn M, et al. Osseointegration of zirconia implants compared with titanium: an in vivo study[J]. Head Face Med, 2008, 4: 30.
10 Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, et al. In vitro biofilm formation on titanium and zirconia implant surfaces[J]. J Periodontol, 2017, 88(3): 298-307.
11 Roehling S, Schlegel KA, Woelfler H, et al. Zirconia compared to titanium dental implants in preclinical studies-a systematic review and meta-analysis[J]. Clin Oral Implants Res, 2019, 30(5): 365-395.
12 Preshaw P. Summary of: implant surface characteristics and their effect on osseointegration[J]. Br Dent J, 2015, 218(5): 292-293.
13 Fukuda N, Kanazawa M, Tsuru K, et al. Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia[J]. Sci Rep, 2018, 8(1): 16887.
14 Niu W, Shi B, Zhou J, et al. Influence of implant surface topography on bone-regenerative potential and mechanical retention in the human maxilla and mandible[J]. Am J Dent, 2014, 27(3): 171-176.
15 Beutner R, Michael J, Schwenzer B, et al. Biological nano-functionalization of titanium-based biomaterial surfaces: a flexible toolbox[J]. J R Soc Interface, 2010, 7(): S93-S105.
16 Wang CC, Hu HX, Li ZP, et al. Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39470-39483.
17 Lukaszewska-Kuska M, Wirstlein P, Majchrowski R, et al. Osteoblastic cell behaviour on modified titanium surfaces[J]. Micron, 2018, 105: 55-63.
18 Shin D, Blanchard SB, Ito M, et al. Peripheral quantitative computer tomographic, histomorphometric, and removal torque analyses of two different non-coated implants in a rabbit model[J]. Clin Oral Implants Res, 2011, 22(3): 242-250.
19 Möller B, Terheyden H, Açil Y, et al. A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study[J]. Int J Oral Maxillofac Surg, 2012, 41(5): 638-645.
20 Yamada M, Ueno T, Minamikawa H, et al. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation[J]. Clin Oral Implants Res, 2013, 24(9): 991-1001.
21 Mueller CK, Solcher P, Peisker A, et al. Analysis of the influence of the macro- and microstructure of dental zirconium implants on osseointegration: a minipig study[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2013, 116(1): e1-8.
22 Zhang Y, Lawn BR, Malament KA, et al. Damage accumulation and fatigue life of particle-abraded ceramics[J]. Int J Prosthodont, 2006, 19(5): 442-448.
23 Finger C, Stiesch M, Eisenburger M, et al. Effect of sandblasting on the surface roughness and residual stress of 3Y-TZP (zirconia)[J]. SN Appl Sci, 2020, 2(10): 1700.
24 Zhang J, Xie YN, Zuo J, et al. Cell responses to titanium treated by a sandblast-free method for implant applications[J]. Mater Sci Eng C, 2017, 78: 1187-1194.
25 Kohal RJ, Weng D, Bächle M, et al. Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment[J]. J Perio-dontol, 2004, 75(9): 1262-1268.
26 Schliephake H, Hefti T, Schlottig F, et al. Mechanical anchorage and peri-implant bone formation of surface-modified zirconia in minipigs[J]. J Clin Pe-riodontol, 2010, 37(9): 818-828.
27 Hoffmann O, Angelov N, Zafiropoulos GG, et al. Osseointegration of zirconia implants with different surface characteristics: an evaluation in rabbits[J]. Int J Oral Maxillofac Implants, 2012, 27(2): 352-358.
28 Bacchelli B, Giavaresi G, Franchi M, et al. Influen-ce of a zirconia sandblasting treated surface on peri-implant bone healing: an experimental study in sheep[J]. Acta Biomater, 2009, 5(6): 2246-2257.
29 Nothdurft FP, Fontana D, Ruppenthal S, et al. Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: a compa-rison of materials and surface topographies[J]. Clin Implant Dent Relat Res, 2015, 17(6): 1237-1249.
30 Lee J, Sieweke JH, Rodriguez NA, et al. Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits[J]. J Clin Periodontol, 2009, 36(7): 610-617.
31 Oh GJ, Yoon JH, Vu VT, et al. Surface characteristics of bioactive glass-infiltrated zirconia with diffe-rent hydrofluoric acid etching conditions[J]. J Nano-sci Nanotechnol, 2017, 17(4): 1645-1648.
32 Sriamporn T, Thamrongananskul N, Busabok C, et al. Dental zirconia can be etched by hydrofluoric a-cid[J]. Dent Mater J, 2014, 33(1): 79-85.
33 Hotchkiss KM, Ayad NB, Hyzy SL, et al. Dental implant surface chemistry and energy alter macrophage activation in vitro [J]. Clin Oral Implants Res, 2017, 28(4): 414-423.
34 Monjo M, Lamolle SF, Lyngstadaas SP, et al. In vivo expression of osteogenic markers and bone mi-neral density at the surface of fluoride-modified titanium implants[J]. Biomaterials, 2008, 29(28): 3771-3780.
35 Lamolle SF, Monjo M, Lyngstadaas SP, et al. Tita-nium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance[J]. J Biomed Mater Res A, 2009, 88(3): 581-588.
36 Hung KY, Lin YC, Feng HP. The effects of acid etching on the nanomorphological surface characte-ristics and activation energy of titanium medical materials[J]. Materials (Basel), 2017, 10(10): 1164.
37 Monje A, González-García R, Fernández-Calderón MC, et al. Surface topographical changes of a fai-ling acid-etched long-term in function retrieved dental implant[J]. J Oral Implantol, 2016, 42(1): 12-16.
38 Giner L, Mercadé M, Torrent S, et al. Double acid etching treatment of dental implants for enhanced biological properties[J]. J Appl Biomater Funct Mater, 2018, 16(2): 83-89.
39 Zahran R, Rosales Leal JI, Rodríguez Valverde MA, et al. Effect of hydrofluoric acid etching time on titanium topography, chemistry, wettability, and cell adhesion[J]. PLoS One, 2016, 11(11): e0165296.
40 Kuo TF, Lu HC, Tseng CF, et al. Evaluation of osseointegration in titanium and zirconia-based dental implants with surface modification in a miniature pig model[J]. J Med Biol Eng, 2017, 37(3): 313-320.
41 Scarano A, Piattelli A, Quaranta A, et al. Bone response to two dental implants with different sandblasted/acid-etched implant surfaces: a histological and histomorphometrical study in rabbits[J]. Bio-med Res Int, 2017, 2017: 8724951.
42 Feng F, Wu YL, Xin HT, et al. Surface characteristics and biocompatibility of ultrafine-grain Ti after sandblasting and acid etching for dental implants[J]. ACS Biomater Sci Eng, 2019, 5(10): 5107-5115.
43 Xie HF, Cheng Y, Chen Y, et al. Improvement in the bonding of Y-TZP by room-temperature ultrasonic HF etching[J]. J Adhes Dent, 2017, 19(5): 425-433.
44 Robles-Ruíz JJ, Arana-Chavez VE, Ciamponi AL, et al. Effects of sandblasting before orthophosphoric acid etching on lingual enamel: in-vitro roughness assessment[J]. Am J Orthod Dentofacial Orthop, 2015, 147(4 ): S76-S81.
45 Mehta AS, Evans CA, Viana G, et al. Bonding of metal orthodontic attachments to sandblasted porcelain and zirconia surfaces[J]. Biomed Res Int, 2016, 2016: 5762785.
46 Hirano T, Sasaki H, Honma S, et al. Proliferation and osteogenic differentiation of human mesenchymal stem cells on zirconia and titanium with diffe-rent surface topography[J]. Dent Mater J, 2015, 34(6): 872-880.
47 Vieira P, Mowery J, Eisenback JD, et al. Cellular and transcriptional responses of resistant and susceptible cultivars of alfalfa to the root lesion nematode, Pratylenchus penetrans [J]. Front Plant Sci, 2019, 10: 971.
48 Liñares A, Grize L, Muñoz F, et al. Histological assessment of hard and soft tissues surrounding a no-vel ceramic implant: a pilot study in the minipig[J]. J Clin Periodontol, 2016, 43(6): 538-546.
49 Iinuma Y, Hirota M, Hayakawa T, et al. Surrounding tissue response to surface-treated zirconia implants[J]. Materials (Basel), 2019, 13(1): 30.
50 Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Selective infiltration-etching technique for a strong and durable bond of resin cements to zirconia-based materials[J]. J Prosthet Dent, 2007, 98(5): 379-388.
51 Abu Ruja M, De Souza GM, Finer Y. Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement[J]. Dent Mater, 2019, 35(11): 1545-1556.
52 Aboushelib MN, Osman E, Jansen I, et al. Influence of a nanoporous zirconia implant surface of on cell viability of human osteoblasts[J]. J Prosthodont, 2013, 22(3): 190-195.
53 Ponmozhi J, Moreira JR, Mergulhão FJ, et al. Fabrication and hydrodynamic characterization of a microfluidic device for cell adhesion tests in polymeric surfaces[J]. Micromachines (Basel), 2019, 10(5): 303.
54 Tanış MÇ, Akay C, Şen M. Effect of selective infiltration etching on the bond strength between zirconia and resin luting agents[J]. J Esthet Restor Dent, 2019, 31(3): 257-262.
55 Gaggl A, Schultes G, Müller WD, et al. Scanning electron microscopical analysis of laser-treated titanium implant surfaces: a comparative study[J]. Biomaterials, 2000, 21(10): 1067-1073.
56 Güçlü ZA, Dönmez N, Tüzüner T, et al. The impact of Er: YAG laser enamel conditioning on the microleakage of a new hydrophilic sealant: ultraSeal XT hydro[J]. Lasers Med Sci, 2016, 31(4): 705-711.
57 Calvo-Guirado JL, Aguilar Salvatierra A, Gargallo-Albiol J, et al. Zirconia with laser-modified microgrooved surface vs. titanium implants covered with melatonin stimulates bone formation. Experimental study in tibia rabbits[J]. Clin Oral Implants Res, 2015, 26(12): 1421-1429.
58 Kurella A, Dahotre NB. Review paper: surface mo-dification for bioimplants: the role of laser surface engineering[J]. J Biomater Appl, 2005, 20(1): 5-50.
59 Calvo-Guirado JL, Aguilar-Salvatierra A, Gomez-Moreno G, et al. Histological, radiological and histomorphometric evaluation of immediate vs. non-immediate loading of a zirconia implant with surface treatment in a dog model[J]. Clin Oral Implants Res, 2014, 25(7): 826-830.
60 Delgado-Ruiz RA, Calvo-Guirado JL, Abboud M, et al. Histologic and histomorphometric behavior of microgrooved zirconia dental implants with imme-diate loading[J]. Clin Implant Dent Relat Res, 2014, 16(6): 856-872.
61 Kasraei S, Rezaei-Soufi L, Heidari B, et al. Bond strength of resin cement to CO2 and Er: YAG laser-treated zirconia ceramic[J]. Restor Dent Endod, 2014, 39(4): 296-302.
62 Okutan Y, Kandemir B, Gundogdu Y, et al. Combined application of femtosecond laser and air-abrasion protocols to monolithic zirconia at different sintering stages: effects on surface roughness and resin bond strength[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(4): 596-605.
63 Romanos GE, Gutknecht N, Dieter S, et al. Laser wavelengths and oral implantology[J]. Lasers Med Sci, 2009, 24(6): 961-970.
64 Yasuno K, Kakura K, Taniguchi Y, et al. Zirconia implants with laser surface treatment: peri-implant bone response and enhancement of osseointegration[J]. J Hard Tissue Biol, 2014, 23(1): 93-100.
65 Delgado-Ruiz RA, Abboud M, Romanos G, et al. Peri-implant bone organization surrounding zirconia-microgrooved surfaces circularly polarized light and confocal laser scanning microscopy study[J]. Clin Oral Implants Res, 2015, 26(11): 1328-1337.
66 Taniguchi Y, Kakura K, Yamamoto K, et al. Accele-rated osteogenic differentiation and bone formation on zirconia with surface grooves created with fiber laser irradiation[J]. Clin Implant Dent Relat Res, 2016, 18(5): 883-894.
67 Scatolin RS, Alonso-Filho FL, Galo R, et al. CO₂ laser emission modes to control enamel erosion[J]. Microsc Res Tech, 2015, 78(8): 654-659.
68 Hao L, Lawrence J, Chian KS. Osteoblast cell adhesion on a laser modified zirconia based bioceramic[J]. J Mater Sci Mater Med, 2005, 16(8): 719-726.
69 Park JH, Heo SJ, Koak JY, et al. Effects of laser irradiation on machined and anodized titanium disks[J]. Int J Oral Maxillofac Implants, 2012, 27(2): 265-272.
70 Hao L, Lawrence J, Chian KS. Effects of CO2 laser irradiation on the surface properties of magnesia-partially stabilised zirconia (MgO-PSZ) bioceramic and the subsequent improvements in human osteoblast cell adhesion[J]. J Biomater Appl, 2004, 19(2): 81-105.
71 Di Matteo F, Bettin P, Fiori M, et al. Nd: Yag laser goniopuncture for deep sclerectomy: efficacy and outcomes[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(3): 535-539.
72 Beketova A, Poulakis N, Bakopoulou A, et al. Indu-cing bioactivity of dental ceramic/bioactive glass composites by Nd: YAG laser[J]. Dent Mater, 2016, 32(11): e284-e296.
73 Safi IN, Ali Hussein BM, Al-Shammari AM. Testing and characterization of sintered β‑tricalcium phosphate coat upon zirconia dental implant using Nd: YAG laser[J]. J Laser Appl, 2019, 31(3): 032002.
74 Kakura K, Yasuno K, Taniguchi Y, et al. Zirconia implant with rough surface produced by YAG laser treatment: evaluation of histomorphology and streng-th of osseointegration[J]. J Hard Tissue Biol, 2014, 23(1): 77-82.
75 Sugioka K, Xu J, Wu D, et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass[J]. Lab Chip, 2014, 14(18): 3447-3458.
76 Nadeem D, Sjostrom T, Wilkinson A, et al. Embos-sing of micropatterned ceramics and their cellular response[J]. J Biomed Mater Res A, 2013, 101(11): 3247-3255.
77 Stanciuc AM, Flamant Q, Sprecher CM, et al. Femtosecond laser multi-patterning of zirconia for scree-ning of cell-surface interactions[J]. J Eur Ceram Soc, 2018, 38(3): 939-948.
78 Carvalho A, Cangueiro L, Oliveira V, et al. Femtosecond laser microstructured alumina toughened zirconia: a new strategy to improve osteogenic diffe-rentiation of hMSCs[J]. Appl Surf Sci, 2018, 435: 1237-1245.
79 Stübinger S, Homann F, Etter C, et al. Effect of Er: YAG, CO2 and diode laser irradiation on surface properties of zirconia endosseous dental implants[J]. Lasers Surg Med, 2008, 40(3): 223-228.
80 Delgado-Ruíz RA, Calvo-Guirado JL, Moreno P, et al. Femtosecond laser microstructuring of zirconia dental implants[J]. J Biomed Mater Res B Appl Biomater, 2011, 96(1): 91-100.
81 Zhang WJ, Huang YH, Chen YL, et al. Amphiphilic tetraphenylethene-based pyridinium salt for selective cell-membrane imaging and room-light-induced special reactive oxygen species generation[J]. ACS Appl Mater Interfaces, 2019, 11(11): 10567-10577.
82 Aita H, Hori N, Takeuchi M, et al. The effect of ultraviolet functionalization of titanium on integration with bone[J]. Biomaterials, 2009, 30(6): 1015-1025.
83 Tuna T, Wein M, Altmann B, et al. Effect of ultra-violet photofunctionalisation on the cell attractiveness of zirconia implant materials[J]. Eur Cell Mater, 2015, 29: 82-96.
84 Brezavšček M, Fawzy A, Bächle M, et al. The effect of UV treatment on the osteoconductive capacity of zirconia-based materials[J]. Materials (Basel), 2016, 9(12): 958.
85 Altmann B, Kohal RJ, Steinberg T, et al. Distinct cell functions of osteoblasts on UV-functionalized titanium- and zirconia-based implant materials are modulated by surface topography[J]. Tissue Eng Part C Methods, 2013, 19(11): 850-863.
86 Tuna T, Wein M, Swain M, et al. Influence of ultraviolet photofunctionalization on the surface characteristics of zirconia-based dental implant materials[J]. Dent Mater, 2015, 31(2): e14-24.
87 Att W, Takeuchi M, Suzuki T, et al. Enhanced osteoblast function on ultraviolet light-treated zirconia[J]. Biomaterials, 2009, 30(7): 1273-1280.
88 Roy M, Pompella A, Kubacki J, et al. Photofunctio-nalization of dental zirconia oxide: surface modification to improve bio-integration preserving crystal stability[J]. Colloids Surf B Biointerfaces, 2017, 156: 194-202.
89 Whitesides GM, Grzybowski B. Self-assembly at all scales[J]. Science, 2002, 295(5564): 2418-2421.
90 Ansari HM, Dixit V, Zimmerman LB, et al. Self assembly of nanoislands on YSZ-(001) surface: a mechanistic approach toward a robust process[J]. Nano Lett, 2013, 13(5): 2116-2121.
91 Rim KT, Koo KH, Park JS. Toxicological evaluations of rare earths and their health impacts to wor-kers: a literature review[J]. Saf Health Work, 2013, 4(1): 12-26.
92 Hanawa T. A comprehensive review of techniques for biofunctionalization of titanium[J]. J Periodontal Implant Sci, 2011, 41(6): 263-272.
93 Khatayevich D, Gungormus M, Yazici H, et al. Biofunctionalization of materials for implants using engineered peptides[J]. Acta Biomater, 2010, 6(12): 4634-4641.
94 Chen X, Sevilla P, Aparicio C. Surface biofunctio-nalization by covalent co-immobilization of oligopeptides[J]. Colloids Surf B Biointerfaces, 2013, 107: 189-197.
95 Namavar F, Rubinstein A, Sabirianov R, et al. Engineered nanostructured coatings for enhanced protein adsorption and cell growth[J]. MRS Proc, 2013, 1418: 119-125.
96 Kemker I, Feiner RC, Müller KM, et al. Size-dependent cellular uptake of RGD peptides[J]. Chembiochem, 2020, 21(4): 496-499.
97 Hsu SK, Tian JM, Ho WF, et al. Enhancing the bioactivity of yttria-stabilized zirconia immobilized with adhesive peptide using L-dopa as cross-linker[J]. Thin Solid Films, 2016, 620: 145-149.
98 Liu MY, Zhou JF, Yang Y, et al. Surface modification of zirconia with polydopamine to enhance fibroblast response and decrease bacterial activity in vitro: a potential technique for soft tissue engineering applications[J]. Colloids Surf B Biointerfaces, 2015, 136: 74-83.
99 Mahapatro A. Bio-functional nano-coatings on metallic biomaterials[J]. Mater Sci Eng C Mater Biol Appl, 2015, 55: 227-251.
100 Osman RB, van der Veen AJ, Huiberts D, et al. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs[J]. J Mech Behav Biomed Mater, 2017, 75: 521-528.
101 Böke F, Schickle K, Fischer H. Biological activation of inert ceramics: recent advances using tailored self-assembled monolayers on implant ceramic surfaces[J]. Materials (Basel), 2014, 7(6): 4473-4492.
102 Caravaca C, Shi L, Balvay S, et al. Direct silanization of zirconia for increased biointegration[J]. Acta Biomater, 2016, 46: 323-335.
103 Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants[J]. J Biomed Mater Res, 2002, 62(2): 175-184.
104 Liang H, Wan YZ, He F, et al. Bioactivity of Mg-ion-implanted zirconia and titanium[J]. Appl Surf Sci, 2007, 253(6): 3326-3333.
105 Schienle S, Al-Ahmad A, Kohal RJ, et al. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings[J]. Clin Oral Investig, 2016, 20(7): 1719-1732.
106 Xuereb M, Camilleri J, Attard NJ. Systematic review of current dental implant coating materials and novel coating techniques[J]. Int J Prosthodont, 2015, 28(1): 51-59.
107 Junker R, Dimakis A, Thoneick M, et al. Effects of implant surface coatings and composition on bone integration: a systematic review[J]. Clin Oral Implants Res, 2009, 20(): 185-206.
108 Estrada-Cabrera E, Torres-Ferrer LR, Aztatzi-Aguilar OG, et al. Chitosan-bioglass coatings on partially nanostructured anodized Ti-6Al-4V alloy for biomedical applications[J]. Surf Coat Technol, 2019, 375: 468-476.
109 Ranga N, Gahlyan S, Duhan S. Antibacterial efficiency of Zn, Mg and Sr doped bioactive glass for bone tissue engineering[J]. J Nanosci Nanotechnol, 2020, 20(4): 2465-2472.
110 Kiefer K, Amlung M, Aktas OC, et al. Novel glass-like coatings for cardiovascular implant application: preparation, characterization and cellular interaction[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 812-816.
111 Araújo M, Miola M, Venturello A, et al. Glass coa-tings on zirconia with enhanced bioactivity[J]. J Eur Ceram Soc, 2016, 36(13): 3201-3210.
112 Ben-Arfa BAE, Miranda Salvado IM, Ferreira JMF, et al. A hundred times faster: novel, rapid sol-gel synthesis of bio-glass nanopowders (Si-Na-Ca-P system, Ca:P=1.67) without aging[J]. Int J Appl Glass Sci, 2017, 8(3): 337-343.
113 Rocchietta I, Fontana F, Addis A, et al. Surface-modified zirconia implants: tissue response in rabbits[J]. Clin Oral Implants Res, 2009, 20(8): 844-850.
114 Stefanic M, Krnel K, Kosmac T. Novel method for the synthesis of a β-tricalcium phosphate coating on a zirconia implant[J]. J Eur Ceram Soc, 2013, 33(15/16): 3455-3465.
115 Yang YZ, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process: an alternative to plasma spraying[J]. Biomaterials, 2005, 26(3): 327-337.
116 Surmenev RA, Surmeneva MA, Ivanova AA. Signi-ficance of calcium phosphate coatings for the enhancement of new bone osteogenesis: a review[J]. Acta Biomater, 2014, 10(2): 557-579.
117 Nijhuis AWG, Leeuwenburgh SCG, Jansen JA. Wet-chemical deposition of functional coatings for bone implantology[J]. Macromol Biosci, 2010, 10(11): 1316-1329.
118 Stefanic M, Milacic R, Drazic G, et al. Synthesis of bioactive β‑TCP coatings with tailored physico-chemical properties on zirconia bioceramics[J]. J Mater Sci Mater Med, 2014, 25(10): 2333-2345.
119 Faria D, Pires JM, Boccaccini AR, et al. Development of novel zirconia implant’s materials gradated design with improved bioactive surface[J]. J Mech Behav Biomed Mater, 2019, 94: 110-125.
120 Song YG, Cho IH. Characteristics and osteogenic effect of zirconia porous scaffold coated with β-TCP/HA[J]. J Adv Prosthodont, 2014, 6(4): 285-294.
121 Stefanic M, Krnel K, Pribosic I, et al. Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications[J]. Appl Surf Sci, 2012, 258(10): 4649-4656.
122 Cho Y, Hong J, Ryoo H, et al. Osteogenic responses to zirconia with hydroxyapatite coating by aerosol deposition[J]. J Dent Res, 2015, 94(3): 491-499.
123 Furlong RJ, Osborn JF. Fixation of hip prostheses by hydroxyapatite ceramic coatings[J]. J Bone Joint Surg Br, 1991, 73(5): 741-745.
124 Pelaez-Vargas A, Gallego-Perez D, Magallanes-Perdomo M, et al. Isotropic micropatterned silica coa-tings on zirconia induce guided cell growth for dental implants[J]. Dent Mater, 2011, 27(6): 581-589.
125 Laranjeira MS, Carvalho Â, Pelaez-Vargas A, et al. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications[J]. Sci Technol Adv Mater, 2014, 15(2): 025001.
126 Frandsen CJ, Noh K, Brammer KS, et al. Hybrid micro/nano-topography of a TiO2 nanotube-coated co-mmercial zirconia femoral knee implant promotes bone cell adhesion in vitro [J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(5): 2752-2756.
127 Patel SB, Baker N, Marques I, et al. Transparent TiO2 nanotubes on zirconia for biomedical applications[J]. RSC Adv, 2017, 7(48): 30397-30410.
128 Ohishi T, Ichikawa K. Formation and gas barrier properties of silica thin films formed on heat resistant PET (Polyethylene Terephthalate) substrate by excimer light irradiation to polysilazane coatings[J]. Mater Lett, 2019, 247: 143-146.
129 Deng JL, Hu KY, Lu BF, et al. Influence of B4C on oxidation resistance of PSN/borosilicate glass-B4C field-based repair coating of C/C aircraft brake materials at 700-900 ℃[J]. Ceram Int, 2019, 45(16): 20860-20872.
130 Liu J, Hong G, Wu YH, et al. A novel method of surface modification by electrochemical deoxidation: effect on surface characteristics and initial bioactivity of zirconia[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(8): 2641-2652.
131 Pelaez-Vargas A, Gallego-Perez D, Ferrell N, et al. Early spreading and propagation of human bone marrow stem cells on isotropic and anisotropic topographies of silica thin films produced via microstamping[J]. Microsc Microanal, 2010, 16(6): 670-676.
132 Shon WJ, Chung SH, Kim HK, et al. Peri-implant bone formation of non-thermal atmospheric pressure plasma-treated zirconia implants with different surface roughness in rabbit tibiae[J]. Clin Oral Implants Res, 2014, 25(5): 573-579.
133 Kohal RJ, Wolkewitz M, Hinze M, et al. Biomechanical and histological behavior of zirconia implants: an experiment in the rat[J]. Clin Oral Implants Res, 2009, 20(4): 333-339.
134 Langhoff JD, Voelter K, Scharnweber D, et al. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: a study in sheep[J]. Int J Oral Maxillofac Surg, 2008, 37(12): 1125-1132.
[1] Bo Huang,Jian Wang,Xin Zhang. Zirconia ceramics in dental restoration: evaluation and solutions for low-temperature degradation [J]. Int J Stomatol, 2025, 52(2): 169-175.
[2] Mengyuan Zhang,Hongye Lu,Qianhui Li,Ping Sun. Autophagy and its role and mechanism in osseointegration of oral implants [J]. Int J Stomatol, 2024, 51(6): 742-748.
[3] Jiamin Li,Yuchen Li,Zhangjie Ge,Lingzi Liao,Xin Guo,Xiaolong Guo,Ping Zhou. Advancements in the study of antimicrobial peptides in the coating of oral titanium implants [J]. Int J Stomatol, 2024, 51(5): 572-584.
[4] Zheng Zhang,Feng Yang,Jiafeng Li,Kun Cao. Research progress on antimicrobial modification of titanium implants [J]. Int J Stomatol, 2024, 51(5): 585-595.
[5] Xuemin Yao,Hua Wang,Lu Wang,Bin Zhao. Factors influencing the bonding effect of oral translucent zirconia ceramics [J]. Int J Stomatol, 2024, 51(4): 450-455.
[6] Han Chong,He Dongning,Yu Feiyan,Wu Dongchao. Research progress on the mechanism and treatment of pain after oral implants [J]. Int J Stomatol, 2024, 51(1): 99-106.
[7] Liao Honglin,Fang Zhonghan,Zhang Yanyan,Liu Fei,Shen Jiefei.. Diagnosis and treatment of post-traumatic trigeminal neuropathic pain after dental implantation [J]. Int J Stomatol, 2023, 50(6): 729-738.
[8] Gong Jiaming,Zhao Ruimin,Pan Hongwei,Lang Xin,Yu Zhanhai,Li Jianxue. Meta-analysis of dynamic navigation versus static navigation in the accuracy of implant surgery [J]. Int J Stomatol, 2023, 50(5): 538-551.
[9] Wang Xiao-chen,Wang Jian.. Research progress on preparation forms for the margin of monolithic zirconia crowns in posterior teeth [J]. Int J Stomatol, 2023, 50(4): 485-490.
[10] Zhu Keshi,Liao Anqi,Yu Youcheng.. Research progress on the application of machine learning in dental implantology [J]. Int J Stomatol, 2023, 50(4): 491-498.
[11] Lu Qian,Xia Haibin,Wang Min.. Research progress on implantoplasty in the treatment of peri-implantitis [J]. Int J Stomatol, 2023, 50(2): 152-158.
[12] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[13] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[14] Zeng Fang,Wang Jian. Influencing factors of aesthetic prosthesis performance of monolithic zirconia crowns [J]. Int J Stomatol, 2022, 49(2): 233-238.
[15] Yang Guangmei,Wang Jian. Mechanical properties of monolithic zirconia crowns and its relationship with clinical application [J]. Int J Stomatol, 2022, 49(1): 79-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!