Int J Stomatol ›› 2025, Vol. 52 ›› Issue (3): 411-418.doi: 10.7518/gjkq.2025054

• Reviews • Previous Articles    

The role of the Wnt/β-catenin signaling pathway in taste bud development and injury reconstruction

Shuhao Zheng(),Zixia Li,Xin Xu()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-06-14 Revised:2024-11-07 Online:2025-05-01 Published:2025-04-30
  • Contact: Xin Xu E-mail:851730340@qq.com;xin.xu@scu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(82370947)

Abstract:

The Wnt/β-catenin signaling pathway is a major route by which mammals control embryonic development and tissue homeostasis. The taste buds, a receptor of the taste system, generate taste signals to help the body evaluate the toxicity and nutritional components of food. Thus, taste buds play a vital role in the normal metabolism of mammals. The Wnt/β-catenin signaling pathway plays a crucial regulatory role in the development and reconstruction of taste buds, coordinating with other signaling pathways and regulatory factors to ensure the normal development and homeostasis of taste buds and taste bud cells throughout their life cycle. This review discusses the role of the Wnt/β-catenin signaling pathway in gustatory papilla development and repair. The focus is on the Wnt/β-catenin signaling pathway’s regulation of progenitor and precursor cell differentiation, its interaction with other pathways, and maintenance of homeostasis. New insights into the molecular mechanisms of gustatory papilla development and the prevention and treatment of taste disorders are provided.

Key words: Wnt/β-catenin signaling pathway, taste bud, taste cell, development, injury reconstruction

CLC Number: 

  • R78

TrendMD: 

Fig 1

Pattern of Wnt/β-catenin signaling pathway"

Fig 2

Illustration of the circumvallate papillae, taste bud and taste cell"

Fig 3

The sequence of taste bud and papilla development in mouse embryos"

1 Egan JM. Physiological integration of taste and metabolism[J]. N Engl J Med, 2024, 390(18): 1699-1710.
2 Song CY, Wang ZJ, Li HQ, et al. Recent advances in taste transduction mechanism, analysis methods and strategies employed to improve the taste of taste peptides[J]. Crit Rev Food Sci Nutr, 2025, 65(4): 695-714.
3 Whiddon ZD, Marshall JB, Alston DC, et al. Rapid structural remodeling of peripheral taste neurons is independent of taste cell turnover[J]. PLoS Biol, 2023, 21(8): e3002271.
4 郑欣, 徐欣, 何金枝, 等. 哺乳动物味蕾发育与重建的研究现状[J]. 华西口腔医学杂志, 2018, 36(5): 552-558.
Zheng X, Xu X, He JZ, et al. Development and homeostasis of taste buds in mammals[J]. West China J Stomatol, 2018, 36(5): 552-558.
5 Gaillard D, Barlow LA. A mechanistic overview of taste bud maintenance and impairment in cancer therapies[J]. Chem Senses, 2021, 46: bjab011.
6 Morelli I, Desideri I, Romei A, et al. Impact of radia-tion dose on patient-reported acute taste alteration in a prospective observational study cohort in head and neck squamous cell cancer (HNSCC)[J]. Radiol Med, 2023, 128(12): 1571-1579.
7 Barlow LA. The sense of taste: development, regene-ration, and dysfunction[J]. WIREs Mech Dis, 2022, 14(3): e1547.
8 Nusse R, Clevers H. Wnt/β-catenin signaling, di-sease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6): 985-999.
9 Yu FY, Yu CH, Li FF, et al. Wnt/β-catenin signaling in cancers and targeted therapies[J]. Signal Transduct Target Ther, 2021, 6(1): 307.
10 Liu JQ, Xiao Q, Xiao JN, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities[J]. Signal Transduct Target Ther, 2022, 7(1): 3.
11 Nygaard R, Yu J, Kim J, et al. Structural basis of WLS/Evi-mediated Wnt transport and secretion[J]. Cell, 2021, 184(1): 194-206.e14.
12 Liu F, Millar SE. Wnt/beta-catenin signaling in oral tissue development and disease[J]. J Dent Res, 2010, 89(4): 318-330.
13 Barlow LA. Progress and renewal in gustation: new insights into taste bud development[J]. Development, 2015, 142(21): 3620-3629.
14 Tam PPL, Loebel DAF. Gene function in mouse embryogenesis: get set for gastrulation[J]. Nat Rev Ge-net, 2007, 8(5): 368-381.
15 Sokol SY. Maintaining embryonic stem cell pluripotency with Wnt signaling[J]. Development, 2011, 138(20): 4341-4350.
16 Logan CY, Nusse R. The Wnt signaling pathway in development and disease[J]. Annu Rev Cell Dev Biol, 2004, 20: 781-810.
17 Clevers H, Loh KM, Nusse R. Stem cell signaling. An integral program for tissue renewal and regenera-tion: Wnt signaling and stem cell control[J]. Scien-ce, 2014, 346(6205): 1248012.
18 Clevers H. Wnt/beta-catenin signaling in development and disease[J]. Cell, 2006, 127(3): 469-480.
19 Holland JD, Klaus A, Garratt AN, et al. Wnt signa-ling in stem and cancer stem cells[J]. Curr Opin Cell Biol, 2013, 25(2): 254-264.
20 Liman ER, Zhang YV, Montell C. Peripheral coding of taste[J]. Neuron, 2014, 81(5): 984-1000.
21 Chandrashekar J, Hoon MA, Ryba NJP, et al. The receptors and cells for mammalian taste[J]. Nature, 2006, 444(7117): 288-294.
22 Chaudhari N, Roper SD. The cell biology of taste[J]. J Cell Biol, 2010, 190(3): 285-296.
23 Hichami A, Saidi H, Khan AS, et al. In vitro functional characterization of type-Ⅰ taste bud cells as monocytes/macrophages-like which secrete proinflammatory cytokines[J]. Int J Mol Sci, 2023, 24(12): 10325.
24 Feng P, Huang LQ, Wang H. Taste bud homeostasis in health, disease, and aging[J]. Chem Senses, 2014, 39(1): 3-16.
25 Ikuta R, Kakinohana Y, Hamada S. Ultrastructural localization of calcium homeostasis modulator 1 in mouse taste buds[J]. Chem Senses, 2024, 49: bjae019.
26 Li XD. T1R receptors mediate mammalian sweet and umami taste[J]. Am J Clin Nutr, 2009, 90(3): 733S-737S.
27 Meyerhof W, Batram C, Kuhn C, et al. The molecular receptive ranges of human TAS2R bitter taste receptors[J]. Chem Senses, 2010, 35(2): 157-170.
28 Zhang J, Jin H, Zhang WY, et al. Sour sensing from the tongue to the brain[J]. Cell, 2019, 179(2): 392-402.e15.
29 Liman ER, Kinnamon SC. Sour taste: receptors, cells and circuits[J]. Curr Opin Physiol, 2021, 20: 8-15.
30 Turner HN, Liman ER. The cellular and molecular basis of sour taste[J]. Annu Rev Physiol, 2022, 84: 41-58.
31 Nomura K, Nakanishi M, Ishidate F, et al. All-electrical Ca2+-independent signal transduction mediates attractive sodium taste in taste buds[J]. Neuron, 2020, 106(5): 816-829.e6.
32 Chandrashekar J, Kuhn C, Oka Y, et al. The cells and peripheral representation of sodium taste in mice[J]. Nature, 2010, 464(7286): 297-301.
33 Gaillard D, Xu MG, Liu F, et al. β-catenin signaling biases multipotent lingual epithelial progenitors to differentiate and acquire specific taste cell fates[J]. PLoS Genet, 2015, 11(5): e1005208.
34 Kapsimali M, Barlow LA. Developing a sense of taste[J]. Semin Cell Dev Biol, 2013, 24(3): 200-209.
35 Liu F, Thirumangalathu S, Gallant NM, et al. Wnt-beta-catenin signaling initiates taste papilla development[J]. Nat Genet, 2007, 39(1): 106-112.
36 Iwatsuki K, Liu HX, Grónder A, et al. Wnt signa-ling interacts with Shh to regulate taste papilla deve-lopment[J]. Proc Natl Acad Sci U S A, 2007, 104(7): 2253-2258.
37 Zhu X, Liu Y, Zhao P, et al. Gpr177-mediated Wnt signaling is required for fungiform placode initiation[J]. J Dent Res, 2014, 93(6): 582-588.
38 Xu MG, Horrell J, Snitow M, et al. WNT10A mutation causes ectodermal dysplasia by impairing progenitor cell proliferation and KLF4-mediated diffe-rentiation[J]. Nat Commun, 2017, 8: 15397.
39 Petersen CI, Jheon AH, Mostowfi P, et al. FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size[J]. PLoS Genet, 2011, 7(6): e1002098.
40 Prochazkova M, Häkkinen TJ, Prochazka J, et al. FGF signaling refines Wnt gradients to regulate the patterning of taste papillae[J]. Development, 2017, 144(12): 2212-2221.
41 Okubo T, Pevny LH, Hogan BLM. Sox2 is required for development of taste bud sensory cells[J]. Genes Dev, 2006, 20(19): 2654-2659.
42 Liu HX, Grosse AS, Iwatsuki K, et al. Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development[J]. Dev Biol, 2012, 361(1): 39-56.
43 Ishan M, Wang ZH, Zhao P, et al. Taste papilla cell differentiation requires the regulation of secretory protein production by ALK3-BMP signaling in the tongue mesenchyme[J]. Development, 2023, 150(18): dev201838.
44 Hermans F, Hemeryck L, Lambrichts I, et al. Intertwined signaling pathways governing tooth development: a give-and-take between canonical Wnt and shh[J]. Front Cell Dev Biol, 2021, 9: 758203.
45 Ishan M, Chen GQ, Sun CM, et al. Increased activity of mesenchymal ALK2-BMP signaling causes po-steriorly truncated microglossia and disorganization of lingual tissues[J]. Genesis, 2020, 58(1): e23337.
46 Potten CS, Booth D, Cragg NJ, et al. Cell kinetic studies in murine ventral tongue epithelium: cell cycle progression studies using double labelling techniques[J]. Cell Prolif, 2002, 35(): 16-21.
47 Gaillard D, Bowles SG, Salcedo E, et al. β-catenin is required for taste bud cell renewal and behavioral taste perception in adult mice[J]. PLoS Genet, 2017, 13(8): e1006990.
48 Perea-Martinez I, Nagai T, Chaudhari N. Functional cell types in taste buds have distinct longevities[J]. PLoS One, 2013, 8(1): e53399.
49 Wood RM, Vasquez EL, Goyins KA, et al. Cyclophosphamide induces the loss of taste bud innervation in mice[J]. Chem Senses, 2024, 49: bjae010.
50 Laheij AMGA, van de Donk NWCJ. Characterization of dysgeusia and xerostomia in patients with multiple myeloma treated with the T-cell redirecting GPRC5D bispecific antibody talquetamab[J]. Support Care Cancer, 2023, 32(1): 20.
51 李梓瑕, 彭星辰, 徐欣. 头颈放疗引起味觉障碍的临床表现及机制研究进展[J]. 中华放射肿瘤学杂志, 2023, 32(6): 557-561.
Li ZX, Peng XC, Xu X. Research progress on clinical manifestations and mechanism of radiation-induced taste dysfunction in head and neck cancers[J]. Chin J Radiat Oncol, 2023, 32(6): 557-561.
52 Spector AC, Blonde G, Garcea M, et al. Rewiring the gustatory system: specificity between nerve and taste bud field is critical for normal salt discrimination[J]. Brain Research, 2010, 1310: 46-57.
53 Gao YK, Dutta Banik D, Muna MM, et al. The WT1-BASP1 complex is required to maintain the differentiated state of taste receptor cells[J]. Life Sci Alliance, 2019, 2(3): e201800287.
54 Lu CY, Lin XL, Yamashita J, et al. RNF43/ZNRF3 negatively regulates taste tissue homeostasis and positively regulates dorsal lingual epithelial tissue homeostasis[J]. Stem Cell Reports, 2022, 17(2): 369-383.
55 Xiong QC, Liu CJ, Zheng X, et al. METTL3-media-ted m6A RNA methylation regulates dorsal lingual epithelium homeostasis[J]. Int J Oral Sci, 2022, 14(1): 26.
56 Wang X, Feng J, Xue Y, et al. Correction: corrigendum: structural basis of N6-adenosine methylation by the METTL3-METTL14 complex[J]. Nature, 2017, 542(7640): 260.
57 Gaillard D, Shechtman LA, Millar SE, et al. Fractionated head and neck irradiation impacts taste progenitors, differentiated taste cells, and Wnt/β-catenin signaling in adult mice[J]. Sci Rep, 2019, 9(1): 17934.
58 Jewkes BC, Barlow LA, Delay ER. Effect of radiation on sucrose detection thresholds of mice[J]. Chemical Senses, 2018, 43(1): 53-58.
59 Zhu J, Zhang H, Li J, et al. LiCl promotes recovery of radiation-induced oral mucositis and dysgeusia[J]. J Dent Res, 2021, 100(7): 754-763.
[1] Junzhuo Gou,Yafen Zhu,Dingzhuo Jiang,Zhifang Wu. Research progress on the effect of orthodontic treatment on root development during mixed dentition [J]. Int J Stomatol, 2024, 51(6): 662-668.
[2] Weijie Zhang, Xianghui Liu, Yu’e Yang. Recent advances in regulation of congenitally absent teeth by homeobox genes [J]. Int J Stomatol, 2024, 51(3): 374-380.
[3] Wang Jingnan,Deng Shuli.. Root dysplasia of teeth: a review [J]. Int J Stomatol, 2023, 50(6): 639-645.
[4] Xu Shukui,Zhang Shan,Xie Xinyu,Ma Wensheng.. Progress in research into the long-term stability of maxillary protraction therapy in skeletal classmalocclusion [J]. Int J Stomatol, 2023, 50(6): 646-652.
[5] Wang Luodan,Fan Hong. Morphological characteristics of sella turcica and its relationship with malocclusion [J]. Int J Stomatol, 2023, 50(6): 653-660.
[6] Li Peitong,Shi Binmian,Xu Chunmei,Xie Xudong,Wang Jun.. Distribution and role of Gli1+ mesenchymal stem cells in teeth and periodontal tissues [J]. Int J Stomatol, 2023, 50(1): 37-42.
[7] Zhang Yuning,Zeng Ni,Zhang Bei,Shi Bing,Zheng Qian.. A preliminary study of the effect of posterior pharyngeal flap surgery on the maxillofacial growth of patients after palatoplasty [J]. Int J Stomatol, 2023, 50(1): 66-71.
[8] Zhang Shan,Ge Xiaolei,Li Jie,Xie Xinyu,Chang Weiwei,Ma Wensheng.. Meta-analysis of the long-term effect of maxillary protraction on jaw growth and development [J]. Int J Stomatol, 2022, 49(5): 548-555.
[9] Zhao Manzhu,Song Jinlin. Research progress on expression distribution and regulation mechanism of clock genes in tooth development [J]. Int J Stomatol, 2022, 49(4): 380-385.
[10] Jiang Duan,Shen Daonan,Zhao Lei,Wu Yafei. Research progress on the relationship between new anti-inflammatory factor developmental endothelial locus-1 and periodontitis [J]. Int J Stomatol, 2022, 49(2): 244-248.
[11] Liu Jiacheng,Meng Zhaosong,Li Hongjie,Sui Lei. The role of follistatin in oral and maxillofacial development and its therapeutic application prospect [J]. Int J Stomatol, 2021, 48(5): 556-562.
[12] Deng Shiyong,Gong Ping,Tan Zhen. Effects of brain and muscle aryl hydrocarbon receptor nuclear translocator-like protein 1 gene on the regulation of oral and systemic bone metabolism [J]. Int J Stomatol, 2021, 48(2): 198-204.
[13] Jin Zuolin. Craniofacial growth and development in early orthodontic and orthopedic treatment [J]. Int J Stomatol, 2021, 48(1): 7-11.
[14] Cheng Xu,Huang Yixuan,Li Jingtao,Shi Bing. Research progress on orofacial muscle development and regeneration [J]. Int J Stomatol, 2021, 48(1): 71-76.
[15] Shi Yu. The definition of skeletal stem cell in bone development [J]. Int J Stomatol, 2020, 47(3): 249-256.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!