Int J Stomatol ›› 2024, Vol. 51 ›› Issue (6): 749-755.doi: 10.7518/gjkq.2024092

• Reviews • Previous Articles    

Research progress on the mechanism of ribosomal protein L5 in Diamond-Blackfan anemia associated with cleft lip and palate

Wanqiong Zhang(),Qian Zheng(),Zhonglin Jia   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-12-04 Revised:2024-06-25 Online:2024-11-01 Published:2024-11-04
  • Contact: Qian Zheng E-mail:2733318673@qq.com;zq652@163.com
  • Supported by:
    West China Hospital of Stomatology Sichuan University Crossover Project(RD-03-202301)

Abstract:

Ribosomal protein L5 (RPL5) is a part of the large subunit of the ribosome. Diamond-Blackfan anemia in patients who carry mutations in the RPL5 gene is associated with various malformations, including craniofacial malformations such as cleft lip and palate and somatic malformations such as heart defects. In the case of RPL5 mutation leading to defects in ribosome organisms, the mechanism by which cleft lip and palate occurs is still poorly understood. This study reviews recent research on RPL5 and discusses the possible mechanisms by which mutated RPL5 occurs in cleft lip and palate.

Key words: ribosomal protein L5, Diamond-Blackfan anemia, cleft lip and palate, P53, ribosomal protein

CLC Number: 

  • Q75

TrendMD: 
1 da Costa L, Leblanc T, Mohandas N. Diamond-Blackfan anemia[J]. Blood, 2020, 136(11): 1262-1273.
2 Petibon C, Malik Ghulam M, Catala M, et al. Regulation of ribosomal protein genes: an ordered anarchy[J]. Wiley Interdiscip Rev RNA, 2021, 12(3): e1632.
3 Cmejla R, Cmejlova J, Handrkova H, et al. Identification of mutations in the ribosomal protein L5 (RPL5) and ribosomal protein L11 (RPL11) genes in Czech patients with Diamond-Blackfan anemia[J]. Hum Mutat, 2009, 30(3): 321-327.
4 Gazda HT, Sheen MR, Vlachos A, et al. Ribosomal protein L5 and L11 mutations are associated with cleft palate and abnormal thumbs in Diamond-Blackfan anemia patients[J]. Am J Hum Genet, 2008, 83(6): 769-780.
5 Quarello P, Garelli E, Carando A, et al. Diamond-Blackfan anemia: genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations[J]. Haematologica, 2010, 95(2): 206-213.
6 Lipton JM, Atsidaftos E, Zyskind I, et al. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry[J]. Pediatr Blood Cancer, 2006, 46(5): 558-564.
7 Lidral AC, Murray JC. Genetic approaches to identify disease genes for birth defects with cleft lip/pa-late as a model[J]. Birth Defects Res A Clin Mol Teratol, 2004, 70(12): 893-901.
8 Konno Y, Toki T, Tandai S, et al. Mutations in the ribosomal protein genes in Japanese patients with Dia-mond-Blackfan anemia[J]. Haematologica, 2010, 95(8): 1293-1299.
9 Boria I, Garelli E, Gazda HT, et al. The ribosomal basis of Diamond-Blackfan anemia: mutation and database update[J]. Hum Mutat, 2010, 31(12): 1269-1279.
10 Shu S, Ye KQ. Structural and functional analysis of ribosome assembly factor Efg1[J]. Nucleic Acids Res, 2018, 46(4): 2096-2106.
11 Baßler J, Hurt E. Eukaryotic ribosome assembly[J]. Annu Rev Biochem, 2019, 88: 281-306.
12 Warner JR, McIntosh KB. How common are extraribosomal functions of ribosomal proteins[J]. Mol Cell, 2009, 34(1): 3-11.
13 Lafita-Navarro MC, Conacci-Sorrell M. Nucleolar stress: from development to cancer[J]. Semin Cell Dev Biol, 2023, 136: 64-74.
14 Zafar A, Khan MJ, Naeem A. MDM2-an indispen-sable player in tumorigenesis[J]. Mol Biol Rep, 2023, 50(8): 6871-6883.
15 Zhang YP, Lu H. Signaling to p53: ribosomal proteins find their way[J]. Cancer Cell, 2009, 16(5): 369-377.
16 Dörner K, Ruggeri C, Zemp I, et al. Ribosome biogenesis factors-from names to functions[J]. EMBO J, 2023, 42(7): e112699.
17 Michael WM, Dreyfuss G. Distinct domains in ribosomal protein L5 mediate 5S rRNA binding and nucleolar localization[J]. J Biol Chem, 1996, 271(19): 11571-11574.
18 Castillo Duque de Estrada NM, Thoms M, Flemming D, et al. Structure of nascent 5S RNPs at the crossroad between ribosome assembly and MDM2-p53 pathways[J]. Nat Struct Mol Biol, 2023, 30(8): 1119-1131.
19 Bursać S, Brdovčak MC, Pfannkuchen M, et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress[J]. Proc Natl Acad Sci U S A, 2012, 109(50): 20467-20472.
20 Lin YY, Song T, Ronde EM, et al. The important role of MDM2, RPL5, and TP53 in mycophenolic acid-induced cleft lip and palate[J]. Medicine, 2021, 100(21): e26101.
21 Schreiner C, Kernl B, Dietmann P, et al. The ribosomal protein L5 functions during Xenopus anterior development through apoptotic pathways[J]. Front Cell Dev Biol, 2022, 10: 777121.
22 Fukui Y, Hayano S, Kawanabe N, et al. Investigation of the molecular causes underlying physical abnormalities in Diamond-Blackfan anemia patients with RPL5 haploinsufficiency[J]. Pathol Int, 2021, 71(12): 803-813.
23 Liu YL, Shibuya A, Glader B, et al. Animal models of Diamond-Blackfan anemia: updates and challen-ges[J]. Haematologica, 2023, 108(5): 1222-1231.
24 Kazerounian S, Ciarlini PD, Yuan D, et al. Development of soft tissue sarcomas in ribosomal proteins L5 and S24 heterozygous mice[J]. J Cancer, 2016, 7(1): 32-36.
25 Kazerounian S, Yuan D, Alexander MS, et al. Rpl5-inducible mouse model for studying Diamond-Blackfan anemia[J]. Discoveries, 2019, 7(3): e96.
26 Yu L, Lemay P, Ludlow A, et al. A new murine Rpl5 (uL18) mutation provides a unique model of varia-bly penetrant Diamond-Blackfan anemia[J]. Blood Adv, 2021, 5(20): 4167-4178.
27 Rahit KMTH, Tarailo-Graovac M. Genetic modi-fiers and rare Mendelian disease[J]. Genes, 2020, 11(3): 239.
28 Maehama T, Nishio M, Otani J, et al. Nucleolar stress: molecular mechanisms and related human diseases[J]. Cancer Sci, 2023, 114(5): 2078-2086.
29 Panić L, Tamarut S, Sticker-Jantscheff M, et al. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation[J]. Mol Cell Biol, 2006, 26(23): 8880-8891.
30 Lindström MS, Bartek J, Maya-Mendoza A. p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways[J]. Cell Death Differ, 2022, 29(5): 972-982.
31 Bowen ME, Attardi LD. The role of p53 in developmental syndromes[J]. J Mol Cell Biol, 2019, 11(3): 200-211.
32 Matsumori H, Watanabe K, Tachiwana H, et al. Ribosomal protein L5 facilitates rDNA-bundled condensate and nucleolar assembly[J]. Life Sci Al-liance, 2022, 5(7): e202101045.
33 Bizhanova A, Kaufman PD. Close to the edge: he-terochromatin at the nucleolar and nuclear periphe-ries[J]. Biochim Biophys Acta Gene Regul Mech, 2021, 1864(1): 194666.
34 Kapralova K, Jahoda O, Koralkova P, et al. Oxidative DNA damage, inflammatory signature, and altered erythrocytes properties in Diamond-Blackfan anemia[J]. Int J Mol Sci, 2020, 21(24): 9652.
35 Sulima SO, Kampen KR, Vereecke S, et al. Ribosomal lesions promote oncogenic mutagenesis[J]. Cancer Res, 2019, 79(2): 320-327.
36 Klionsky DJ, Petroni G, Amaravadi RK, et al. Autophagy in major human diseases[J]. EMBO J, 2021, 40(19): e108863.
37 Manickavinayaham S, Velez-Cruz R, Biswas AK, et al. The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors[J]. Cell Cycle, 2020, 19(18): 2260-2269.
38 Luan YZ, Tang N, Yang JQ, et al. Deficiency of ribosomal proteins reshapes the transcriptional and translational landscape in human cells[J]. Nucleic Acids Res, 2022, 50(12): 6601-6617.
39 Kang J, Brajanovski N, Chan KT, et al. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 323.
40 Kampen KR, Sulima SO, Vereecke S, et al. Hallmarks of ribosomopathies[J]. Nucleic Acids Res, 2020, 48(3): 1013-1028.
41 Farley-Barnes KI, Ogawa LM, Baserga SJ. Ribosomopathies: old concepts, new controversies[J]. Trends Genet, 2019, 35(10): 754-767.
42 Miller SC, MacDonald CC, Kellogg MK, et al. Specialized ribosomes in health and disease[J]. Int J Mol Sci, 2023, 24(7): 6334.
43 Boussaid I, Le Goff S, Floquet C, et al. Integrated analyses of translatome and proteome identify the rules of translation selectivity in RPS14-deficient cells[J]. Haematologica, 2021, 106(3): 746-758.
44 Genuth NR, Barna M. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life[J]. Mol Cell, 2018, 71(3): 364-374.
[1] Chen Zhuo,Shi Bing,Li Jingtao.. Characterizing the nasal growth among patients with cleft lip and palate [J]. Int J Stomatol, 2023, 50(3): 279-286.
[2] Pei Ling,Zeng Ni,Yang Chao,Wang Yan,He Miao,Luo Qiang,Shi Bing. Analgesic effects of local anesthesia after cleft lip and palate repair [J]. Int J Stomatol, 2022, 49(6): 657-662.
[3] Huang Yixuan,Shi Bing,Li Jingtao.. Research progress on nasal airway among patients with cleft lip and palate [J]. Int J Stomatol, 2022, 49(4): 453-461.
[4] Zhang Qi,Fan Cunhui,Yang Qian,Li Ran,Xu Xiaolin,Ding Wei,Wang Wenhui,Yang Caixiu. Dental arch morphology between patients with unilateral complete cleft lip and palate and patients with non-cleft lip and palate with a class Ⅲ skeletal relationship in mixed dentition stage: a comparative study [J]. Int J Stomatol, 2022, 49(2): 144-152.
[5] Sun Jialin,Lin Yansong,Shi Bing,Jia Zhonglin. Research progress on genetics of five common syndromic subtypes of cleft lip and palate [J]. Int J Stomatol, 2021, 48(6): 718-724.
[6] Wu Min,Shi Bing. Research progress on breastfeeding infants with cleft lip and palate [J]. Int J Stomatol, 2021, 48(3): 269-273.
[7] Song Shaohua,Mo Shuixue. Orthodontic treatment in sequential treatment of cleft lip and palate [J]. Int J Stomatol, 2019, 46(6): 740-744.
[8] Deng Chengdan,Shi Bing,Li Yang. Research progress on the brain structure and function of patients with cleft lip and palate [J]. Int J Stomatol, 2019, 46(5): 617-620.
[9] Dan Liu,Bochun Mao,Ruyan Luo,Ke Cui,Bing Shi,Caixia Gong. Family resilience for families of children with cleft lip and palate and discussion on its influencing factors [J]. Int J Stomatol, 2019, 46(3): 297-301.
[10] Yuhao Liu,Na Bai,Menglong Cheng,Bing Shi,Zhihui Li,Caixia Gong. Effect of video modeling on the perioperative psychological status of parents of children with cleft lip and palate [J]. Inter J Stomatol, 2019, 46(1): 26-29.
[11] Qun Li,Weiqun Guan,Yang’an Zhang,Zhichao. Huang. Expression of periostin and p53 in oral leukoplakia and oral squamous cell carcinoma [J]. Inter J Stomatol, 2019, 46(1): 5-11.
[12] Tongtong Han,Qiaoer Chen,Youming. Zhu. Long non-coding RNA associated with p53 and the relationship with tumor [J]. Inter J Stomatol, 2018, 45(5): 597-602.
[13] Pu Hongling, Chen Lixian, Gong Caixia, Wu Min, Shi Bing. Changes of blood biochemical indexes in 0-6 years old children with cleft lip and palate [J]. Inter J Stomatol, 2017, 44(4): 385-389.
[14] Pan Yingdan, Liu Yiqin, Xiao Liwei. Orthodontic treatment of patients with cleft lip and palate in mixed dentition [J]. Inter J Stomatol, 2017, 44(4): 380-384.
[15] Chen Zhiyi, Chen Zhenqi. Dental anomalies of anterior permanent teeth in patients with cleft lip and palate [J]. Inter J Stomatol, 2017, 44(4): 393-397.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!