Int J Stomatol ›› 2020, Vol. 47 ›› Issue (6): 717-724.doi: 10.7518/gjkq.2020106

• Reviews • Previous Articles     Next Articles

Research progress on the pathogenesis of medication-related osteonecrosis of the jaw

Guo Zhiyong1(),Liu Jiyuan2(),Li Chunjie1,Tang Xiufa1   

  1. 1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-04-05 Revised:2020-08-02 Online:2020-11-01 Published:2020-11-06
  • Contact: Jiyuan Liu E-mail:realzhiyongguo@qq.com;20532465@qq.com
  • Supported by:
    Key Research and Development Project of Sichuan Science and Technology Department(2017SZ0108)

Abstract:

Medication-related osteonecrosis of the jaw (MRONJ) is a severe bone disease unique to the jaw. It is closely related to antiresorptive drugs and antiangiogenic drugs, such as bisphosphonates and denosumab. The effect of current treatments on MRONJ is limited. Despite the rapid progression of the pathogenesis of MRONJ, the specific mechanism remains unclear. The hypotheses of MRONJ mainly include disrupted bone remodeling, suppression of angiogenesis, oral microbial infection, inhibition of immunity, toxicity of soft tissue, and microcracks. The pathogenesis of MRONJ may be influenced by multiple factors. The purpose of the current review is to summarize recent progress on MRONJ research.

Key words: osteonecrosis, bisphosphonates, jaw

CLC Number: 

  • R782.3

TrendMD: 
[1] Ruggiero SL, Dodson TB, Fantasia J, et al. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw: 2014 update[J]. J Oral Maxillofac Surg, 2014,72(10):1938-1956.
doi: 10.1016/j.joms.2014.04.031 pmid: 25234529
[2] de Souza Tolentino E, de Castro TF, Michellon FC, et al. Adjuvant therapies in the management of me-dication-related osteonecrosis of the jaws: systematic review[J]. Head Neck, 2019,41(12):4209-4228.
pmid: 31502752
[3] Weber JB, Camilotti RS, Ponte ME. Efficacy of laser therapy in the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ): a systematic review[J]. Lasers Med Sci, 2016,31(6):1261-1272.
doi: 10.1007/s10103-016-1929-4 pmid: 27025860
[4] Chang J, Hakam AE, McCauley LK. Current unders-tanding of the pathophysiology of osteonecrosis of the jaw[J]. Curr Osteoporos Rep, 2018,16(5):584-595.
doi: 10.1007/s11914-018-0474-4 pmid: 30155844
[5] Kimachi K, Kajiya H, Nakayama S, et al. Zoledronic acid inhibits RANK expression and migration of osteoclast precursors during osteoclastogenesis[J]. Naunyn Schmiedebergs Arch Pharmacol, 2011,383(3):297-308.
doi: 10.1007/s00210-010-0596-4 pmid: 21225243
[6] Sharma D, Ivanovski S, Slevin M, et al. Bisphosphonate- related osteonecrosis of jaw (BRONJ): diagnostic criteria and possible pathogenic mechanisms of an unexpected anti-angiogenic side effect[J]. Vasc Cell, 2013,5(1):1.
doi: 10.1186/2045-824X-5-1 pmid: 23316704
[7] Jobke B, Milovanovic P, Amling M, et al. Bisphos-phonate-osteoclasts: changes in osteoclast morpho-logy and function induced by antiresorptive nitrogen-containing bisphosphonate treatment in osteoporosis patients[J]. Bone, 2014,59:37-43.
doi: 10.1016/j.bone.2013.10.024 pmid: 24211427
[8] Rogers MJ, Gordon S, Benford HL, et al. Cellular and molecular mechanisms of action of bisphosphonates[J]. Cancer, 2000,88(12 Suppl):2961-2978.
doi: 10.1002/1097-0142(20000615)88:12+<2961::aid-cncr12>3.3.co;2-c pmid: 10898340
[9] Zara S, De Colli M, di Giacomo V, et al. Zoledronic acid at subtoxic dose extends osteoblastic stage span of primary human osteoblasts[J]. Clin Oral Investig, 2015,19(3):601-611.
pmid: 25055744
[10] Giannasi C, Niada S, Farronato D, et al. Nitrogen containing bisphosphonates impair the release of bone homeostasis mediators and matrix production by human primary pre-osteoblasts[J]. Int J Med Sci, 2019,16(1):23-32.
pmid: 30662325
[11] Manzano-Moreno FJ, Ramos-Torrecillas J, Me-lguizo-Rodríguez L, et al. Bisphosphonate modula-tion of the gene expression of different markers involved in osteoblast physiology: possible im-plications in bisphosphonate-related osteonecrosis of the jaw[J]. Int J Med Sci, 2018,15(4):359-367.
doi: 10.7150/ijms.22627 pmid: 29511371
[12] Weinstein RS, Roberson PK, Manolagas SC. Giant osteoclast formation and long-term oral bisphos-phonate therapy[J]. N Engl J Med, 2009,360(1):53-62.
doi: 10.1056/NEJMoa0802633 pmid: 19118304
[13] Córdova LA, Guilbaud F, Amiaud J, et al. Severe compromise of preosteoblasts in a surgical mouse model of bisphosphonate-associated osteonecrosis of the jaw[J]. J Craniomaxillofac Surg, 2016,44(9):1387-1394.
doi: 10.1016/j.jcms.2016.07.015 pmid: 27519659
[14] Zhu SP, Yao F, Qiu H, et al. Coupling factors and exosomal packaging microRNAs involved in the regulation of bone remodelling[J]. Biol Rev Camb Philos Soc, 2018,93(1):469-480.
pmid: 28795526
[15] Hattner R, Epker BN, Frost HM. Suggested sequen-tial mode of control of changes in cell behaviour in adult bone remodelling[J]. Nature, 1965,206(983):489-490.
doi: 10.1038/206489a0 pmid: 5319106
[16] Shimizu E, Tamasi J, Partridge NC. Alendronate affects osteoblast functions by crosstalk through EphrinB1-EphB[J]. J Dent Res, 2012,91(3):268-274.
pmid: 22180568
[17] Di Salvatore M, Orlandi A, Bagalà C, et al. Anti-tumour and anti-angiogenetic effects of zoledronic acid on human non-small-cell lung cancer cell line[J]. Cell Prolif, 2011,44(2):139-146.
pmid: 21401755
[18] Lelièvre L, Clézardin P, Magaud L, et al. Comparative study of neoadjuvant chemotherapy with and without zometa for management of locally advanced breast cancer with serum VEGF as primary endpoint: the NEOZOL study[J]. Clin Breast Cancer, 2018,18(6):e1311-e1321.
pmid: 30098917
[19] Wehrhan F, Stockmann P, Nkenke E, et al. Differential impairment of vascularization and angiogenesis in bisphosphonate-associated osteonecrosis of the jaw-related mucoperiosteal tissue[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011,112(2):216-221.
doi: 10.1016/j.tripleo.2011.02.028 pmid: 21664154
[20] Ferretti G, Fabi A, Carlini P, et al. Zoledronic-acid-induced circulating level modifications of angiogenic factors, metalloproteinases and proinflammatory cytokines in metastatic breast cancer patients[J]. Oncology, 2005,69(1):35-43.
doi: 10.1159/000087286 pmid: 16088233
[21] Oteri G, Allegra A, Bellomo G, et al. Reduced serum levels of interleukin 17 in patients with osteonecrosis of the jaw and in multiple myeloma subjects after bisphosphonates administration[J]. Cytokine, 2008,43(2):103-104.
pmid: 18585926
[22] Yamada J, Tsuno NH, Kitayama J, et al. Anti-angio-genic property of zoledronic acid by inhibition of endothelial progenitor cell differentiation[J]. J Surg Res, 2009,151(1):115-120.
doi: 10.1016/j.jss.2008.01.031 pmid: 18619615
[23] Hasmim M, Bieler G, Rüegg C. Zoledronate inhibits endothelial cell adhesion, migration and survival through the suppression of multiple, prenylation-dependent signaling pathways[J]. J Thromb Haemost, 2007,5(1):166-173.
doi: 10.1111/j.1538-7836.2006.02259.x pmid: 17059425
[24] Lang M, Zhou Z, Shi L, et al. Influence of zoledronic acid on proliferation, migration, and apoptosis of vascular endothelial cells[J]. Br J Oral Maxillofac Surg, 2016,54(8):889-893.
pmid: 27344431
[25] Hoefert S, Eufinger H. Sunitinib may raise the risk of bisphosphonate-related osteonecrosis of the jaw: presentation of three cases[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010,110(4):463-469.
pmid: 20692189
[26] Gnant M, Baselga J, Rugo HS, et al. Effect of everolimus on bone marker levels and progressive disease in bone in BOLERO-2[J]. J Natl Cancer Inst, 2013,105(9):654-663.
doi: 10.1093/jnci/djt026 pmid: 23425564
[27] Magremanne M, Lahon M, De Ceulaer J, et al. Unusual bevacizumab-related complication of an oral in-fection[J]. J Oral Maxillofac Surg, 2013,71(1):53-55.
doi: 10.1016/j.joms.2012.03.022 pmid: 22705223
[28] Misso G, Porru M, Stoppacciaro A, et al. Evaluation of the in vitro and in vivo antiangiogenic effects of denosumab and zoledronic acid[J]. Cancer Biol Ther, 2012,13(14):1491-1500.
pmid: 22990205
[29] Gao SY, Zheng GS, Wang L, et al. Zoledronate sup-pressed angiogenesis and osteogenesis by inhibiting osteoclasts formation and secretion of PDGF-BB[J]. PLoS One, 2017,12(6):e0179248.
doi: 10.1371/journal.pone.0179248 pmid: 28594896
[30] Ohlrich EJ, Coates DE, Cullinan MP, et al. The bis-phosphonate zoledronic acid regulates key angio-genesis-related genes in primary human gingival fibroblasts[J]. Arch Oral Biol, 2016,63:7-14.
doi: 10.1016/j.archoralbio.2015.11.013 pmid: 26658366
[31] Khan AA, Morrison A, Hanley DA, et al. Diagnosis and management of osteonecrosis of the jaw: a syste-matic review and international consensus[J]. J Bone Miner Res, 2015,30(1):3-23.
pmid: 25414052
[32] Sanchez BC, Chang C, Wu CG, et al. Electron trans-port chain is biochemically linked to pilus assembly required for polymicrobial interactions and biofilm formation in the gram-positive actinobacterium Actinomyces oris[J]. mBio, 2017,8(3):e00399-e00317.
doi: 10.1128/mBio.00399-17 pmid: 28634238
[33] Kaplan I, Anavi K, Anavi Y, et al. The clinical spec-trum of Actinomyces-associated lesions of the oral mucosa and jawbones: correlations with histomor-phometric analysis[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009,108(5):738-746.
doi: 10.1016/j.tripleo.2009.06.019 pmid: 19748292
[34] Pushalkar S, Li X, Kurago Z, et al. Oral microbiota and host innate immune response in bisphosphonate-related osteonecrosis of the jaw[J]. Int J Oral Sci, 2014,6(4):219-226.
doi: 10.1038/ijos.2014.46 pmid: 25105817
[35] Hinson AM, Smith CW, Siegel ER, et al. Is bisphos-phonate-related osteonecrosis of the jaw an infection? A histological and microbiological ten-year summary[J]. Int J Dent, 2014: 452737.
[36] Russmueller G, Seemann R, Weiss K, et al. The association of medication-related osteonecrosis of the jaw with Actinomyces spp. infection[J]. Sci Rep, 2016,6:31604.
doi: 10.1038/srep31604 pmid: 27530150
[37] Sedghizadeh PP, Yooseph S, Fadrosh DW, et al. Metagenomic investigation of microbes and viruses in patients with jaw osteonecrosis associated with bisphosphonate therapy[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2012,114(6):764-770.
doi: 10.1016/j.oooo.2012.08.444 pmid: 23159114
[38] Kalyan S, Quabius ES, Wiltfang J, et al. Can peripheral blood γδ T cells predict osteonecrosis of the jaw? An immunological perspective on the adverse drug effects of aminobisphosphonate therapy[J]. J Bone Miner Res, 2013,28(4):728-735.
doi: 10.1002/jbmr.1769 pmid: 22991330
[39] Silveira FM, Etges A, Correa MB, et al. Microscopic evaluation of the effect of oral microbiota on the development of bisphosphonate-related osteonecrosis of the jaws in rats[J]. J Oral Maxillofac Res, 2016,7(4):e3.
doi: 10.5037/jomr.2016.7403 pmid: 28154747
[40] Ono T, Okamoto K, Nakashima T, et al. IL-17-producing γδ T cells enhance bone regeneration[J]. Nat Commun, 2016,7:10928.
doi: 10.1038/ncomms10928 pmid: 26965320
[41] Wolf AM, Rumpold H, Tilg H, et al. The effect of zoledronic acid on the function and differentiation of myeloid cells[J]. Haematologica, 2006,91(9):1165-1171.
pmid: 16956814
[42] Orsini G, Failli A, Legitimo A, et al. Zoledronic acid modulates maturation of human monocyte-derived dendritic cells[J]. Exp Biol Med (Maywood), 2011,236(12):1420-1426.
doi: 10.1258/ebm.2011.011168
[43] Zhang QZ, Atsuta I, Liu SY, et al. IL-17-mediated M1/M2 macrophage alteration contributes to patho-genesis of bisphosphonate-related osteonecrosis of the jaws[J]. Clin Cancer Res, 2013,19(12):3176-3188.
doi: 10.1158/1078-0432.CCR-13-0042 pmid: 23616636
[44] Movila A, Mawardi H, Nishimura K, et al. Possible pathogenic engagement of soluble semaphorin 4D produced by γδT cells in medication-related osteone-crosis of the jaw (MRONJ)[J]. Biochem Biophys Res Commun, 2016,480(1):42-47.
doi: 10.1016/j.bbrc.2016.10.012 pmid: 27720716
[45] Park S, Kanayama K, Kaur K, et al. Osteonecrosis of the jaw developed in mice: disease variants regulated by γδ t cells in oral mucosal barrier immunity[J]. J Biol Chem, 2015,290(28):17349-17366.
doi: 10.1074/jbc.M115.652305 pmid: 26013832
[46] Hagelauer N, Pabst AM, Ziebart T, et al. In vitro effects of bisphosphonates on chemotaxis, phagocytosis, and oxidative burst of neutrophil granulocytes[J]. Clin Oral Investig, 2015,19(1):139-148.
pmid: 24668343
[47] Jin HM, Kee SJ, Cho YN, et al. Dysregulated osteo-clastogenesis is related to natural killer T cell dys-function in rheumatoid arthritis[J]. Arthritis Rheumatol, 2015,67(10):2639-2650.
pmid: 26097058
[48] Tseng HC, Kanayama K, Kaur K, et al. Bisphosphonate- induced differential modulation of immune cell function in gingiva and bone marrow in vivo: role in osteoclast-mediated NK cell activation[J]. Oncotar-get, 2015,6(24):20002-20025.
[49] Grassi F, Manferdini C, Cattini L, et al. T cell sup-pression by osteoclasts in vitro[J]. J Cell Physiol, 2011,226(4):982-990.
doi: 10.1002/jcp.22411
[50] Ziebart T, Halling F, Heymann P, et al. Impact of soft tissue pathophysiology in the development and maintenance of bisphosphonate-related osteonecrosis of the jaw (BRONJ)[J]. Dent J (Basel), 2016,4(4):E36.
[51] Pabst AM, Ziebart T, Koch FP, et al. The influence of bisphosphonates on viability, migration, and apo-ptosis of human oral keratinocytes: in vitro study[J]. Clin Oral Investig, 2012,16(1):87-93.
doi: 10.1007/s00784-010-0507-6 pmid: 21225298
[52] Jung J, Park JS, Righesso L, et al. Effects of an oral bisphosphonate and three intravenous bisphosphonates on several cell types in vitro[J]. Clin Oral Investig, 2018,22(7):2527-2534.
doi: 10.1007/s00784-018-2349-6 pmid: 29388023
[53] Landesberg R, Cozin M, Cremers S, et al. Inhibition of oral mucosal cell wound healing by bisphosphonates[J]. J Oral Maxillofac Surg, 2008,66(5):839-847.
doi: 10.1016/j.joms.2008.01.026 pmid: 18423269
[54] Li J, Mashiba T, Burr DB. Bisphosphonate treatment suppresses not only stochastic remodeling but also the targeted repair of microdamage[J]. Calcif Tissue Int, 2001,69(5):281-286.
pmid: 11768198
[55] Allen MR, Burr DB. Mandible matrix necrosis in beagle dogs after 3 years of daily oral bisphosphonate treatment[J]. J Oral Maxillofac Surg, 2008,66(5):987-994.
doi: 10.1016/j.joms.2008.01.038 pmid: 18423290
[56] Hoefert S, Schmitz I, Tannapfel A, et al. Importance of microcracks in etiology of bisphosphonate-related osteonecrosis of the jaw: a possible pathogenetic model of symptomatic and non-symptomatic os-teonecrosis of the jaw based on scanning electron microscopy findings[J]. Clin Oral Investig, 2010,14(3):271-284.
doi: 10.1007/s00784-009-0300-6 pmid: 19536569
[57] Kim JW, Landayan ME, Lee JY, et al. Role of micro-cracks in the pathogenesis of bisphosphonate-related osteonecrosis of the jaw[J]. Clin Oral Investig, 2016,20(8):2251-2258.
doi: 10.1007/s00784-016-1718-2
[58] Guo Z, Cui W, Que L, et al. Pharmacogenetics of medication-related osteonecrosis of the jaw: a syste-matic review and meta-analysis[J]. Int J Oral Maxil-lofac Surg, 2020,49(3):298-309.
[59] Sarasquete ME, García-Sanz R, Marín L, et al. Bis-phosphonate-related osteonecrosis of the jaw is associated with polymorphisms of the cytochrome P450 CYP2C8 in multiple myeloma: a genome-wide single nucleotide polymorphism analysis[J]. Blood, 2008,112(7):2709-2712.
doi: 10.1182/blood-2008-04-147884 pmid: 18594024
[60] Arduino PG, Menegatti E, Scoletta M, et al. Vascular endothelial growth factor genetic polymorphisms and haplotypes in female patients with bisphosphonate-related osteonecrosis of the jaws[J]. J Oral Pathol Med, 2011,40(6):510-515.
pmid: 21251073
[61] Di Martino MT, Arbitrio M, Guzzi PH, et al. A peroxisome proliferator-activated receptor gamma (PPARG) polymorphism is associated with zole-dronic acid-related osteonecrosis of the jaw in multi-ple myeloma patients: analysis by DMET microarray profiling[J]. Br J Haematol, 2011,154(4):529-533.
pmid: 21517810
[62] Choi H, Lee JH, Kim HJ, et al. Genetic association between VEGF polymorphisms and BRONJ in the Korean population[J]. Oral Dis, 2015,21(7):866-871.
pmid: 26086871
[63] Holtmann H, Lommen J, Kübler NR, et al. Patho-genesis of medication-related osteonecrosis of the jaw: a comparative study of in vivo and in vitro trials[J]. J Int Med Res, 2018,46(10):4277-4296.
doi: 10.1177/0300060518788987 pmid: 30091399
[1] Liu Yang,Yin Deqiang. Introducing a novel digital articulation workflow with high precision [J]. Int J Stomatol, 2023, 50(5): 499-505.
[2] Wang Chunyi,Li Jingtao.. A case of rare mandible and lower lip duplication and literature review [J]. Int J Stomatol, 2023, 50(4): 452-456.
[3] Chen Xiaoli,Zhang Fan,Liu Chengcheng. Application progress on photobiomodulation in the prevention and treatment of oral complications after radiothe-rapy [J]. Int J Stomatol, 2022, 49(6): 707-716.
[4] Ji Xiao,Zhu Guiquan.. Research progress on the relationship between vitamin D and medication-related osteonecrosis of the jaw [J]. Int J Stomatol, 2022, 49(4): 441-447.
[5] Yang Yunqi,Lin Yangyang,Hou Min. Research advances on jaw stability and influencing factors in surgery-first approach [J]. Int J Stomatol, 2022, 49(2): 227-232.
[6] Ding Zhangfan,Guo Zhiyong,Miao Cheng,Li Chunjie,Xuan Ming,Wang Xiaoyi,Zhang Zhuang. Application of the cone-beam computed tomography-based three-dimensional visualization technology in the surgery of the jaw cystic lesion [J]. Int J Stomatol, 2021, 48(2): 180-186.
[7] Sun Shuzhen,Yang Yadong,Yang Jian. Research progress on complete denture with neutral zone technology [J]. Int J Stomatol, 2019, 46(6): 735-739.
[8] Chang-hong Hu. A concept of returning to the therapeutic nature in treatment and restoration of the edentulous cases [J]. Inter J Stomatol, 2018, 45(6): 621-627.
[9] Zhang Qian, Yang Xudong. Research progress on the effectiveness assessment of decompression on large jaw cystic lesions [J]. Inter J Stomatol, 2017, 44(4): 493-496.
[10] Su Cheng, Wang Zekun, Luo Nanyu, Tang Hua.. Research progress on medication-related osteonecrosis of the jaw [J]. Inter J Stomatol, 2017, 44(2): 228-234.
[11] Chang Zheng1, Gao Pan1, Xuan Ming1, Wang Xiaoyi1, Ma Xiangrui1, Li Kui2. A case report on neurilemmoma of the mandible [J]. Inter J Stomatol, 2016, 43(5): 504-506.
[12] Wei Bin, Sun Guowen. Mechanism and treatment of bisphosphonate-related osteonecrosis of the jaw [J]. Inter J Stomatol, 2016, 43(4): 445-448.
[13] Sun Huiqiang1,2, Liu Jin2. Introduction on the progress of impression techniques of complete denture [J]. Inter J Stomatol, 2013, 40(6): 701-705.
[14] Su Meiying1, Shi Bin1, 2, Zhang Yufeng1, 2.. Influence of bisphosphonates on dental implants [J]. Inter J Stomatol, 2013, 40(5): 653-656.
[15] Wang Yan 1,2,Chen Xizhe 1 .. A review of biological research on mandibular regeneration of newt [J]. Inter J Stomatol, 2013, 40(2): 178-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .