国际口腔医学杂志 ›› 2026, Vol. 53 ›› Issue (1): 98-106.doi: 10.7518/gjkq.2026204
Jianglan Xia(
),Xingqun Cheng,Hongkun Wu(
)
摘要:
龋病是在以细菌为主的多因素作用下,发生于牙体硬组织的慢性感染性疾病,变异链球菌被认为是人类龋病的主要病原体。Mutanobactin,变异链球菌的次级代谢产物,是一种非核糖体肽/聚酮杂交产物,由位于TnSmu2基因岛中的mub基因合成,主要有Mutanobactin A、B、C、D 4种类型,能够体外合成。变异链球菌Mutanobactin在抵抗细菌氧化应激、生态竞争及免疫调节等中发挥作用,产量受细菌内多种调控机制、外界环境及共生菌的影响。本文主要针对Mutanobactin的合成、生理学作用及相关调控机制等方面进行综述,旨在为变异链球菌致龋毒力的机制探索提供新思路,为口腔微生态调节及龋病防治提供新途径。
中图分类号:
| [1] | Pitts NB, Mayne C. Making cavities history: a glo-bal policy consensus for achieving a dental cavity-free future[J]. JDR Clin Trans Res, 2021, 6(3): 264-267. |
| [2] | Kassebaum NJ, Bernabé E, Dahiya M, et al. Global burden of untreated caries: a systematic review and metaregression[J]. J Dent Res, 2015, 94(5): 650-658. |
| [3] | Kreth J, Merritt J, Shi WY, et al. Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm[J]. J Bacteriol, 2005, 187(21): 7193-7203. |
| [4] | Lemos JA, Palmer SR, Zeng L, et al. The biology of Streptococcus mutans [J]. Microbiol Spectr, 2019, 7(1): GPP3-0051-2018. |
| [5] | Krzyściak W, Jurczak A, Kościelniak D, et al. The virulence of Streptococcus mutans and the ability to form biofilms[J]. Eur J Clin Microbiol Infect Dis, 2014, 33(4): 499-515. |
| [6] | Mira A, Simon-Soro A, Curtis MA. Role of micro-bial communities in the pathogenesis of periodontal diseases and caries[J]. J Clin Periodontol, 2017, 44(): S23-S38. |
| [7] | Cheng X, Xu X, Zhou X, et al. Oxidative stress response: a critical factor affecting the ecological competitiveness of Streptococcus mutans [J]. J Oral Microbiol, 2024, 16(1): 2292539. |
| [8] | 宁佳, 胡欣, 程兴群. 变异链球菌氧化应激调控机制的研究进展[J]. 口腔疾病防治, 2023, 31(4): 295-300. |
| Ning J, Hu X, Cheng XQ. Research progress on oxidative stress regulatory mechanisms in Streptococcus mutans [J]. J Prev Treatment Stomatol Dis, 2023, 31(4): 295-300. | |
| [9] | Wu C, Cichewicz R, Li Y, et al. Genomic island TnSmu2 of Streptococcus mutans harbors a nonribosomal peptide synthetase-polyketide synthase gene cluster responsible for the biosynthesis of pigments involved in oxygen and H2O2 tolerance[J]. Appl Environ Microbiol, 2010, 76(17): 5815-5826. |
| [10] | Medema MH, Blin K, Cimermancic P, et al. anti-SMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences[J]. Nuc-leic Acids Res, 2011, 39(Web Server issue): W339-W346. |
| [11] | 谢周杰, 张昭, 刘力伟, 等. 变形链球菌中的次级代谢产物及其在口腔生物被膜中的生态功能[J]. 生物工程学报, 2017, 33(9): 1547-1554. |
| Xie ZJ, Zhang Z, Liu LW, et al. Secondary metabolites from Streptococcus mutans and their ecological roles in dental biofilm[J]. Chin J Biotech, 2017, 33(9): 1547-1554. | |
| [12] | 张梦碟, 程兴群, 徐欣. 变异链球菌聚酮/非核糖体肽类次级代谢产物研究进展[J]. 四川大学学报(医学版), 2023, 54(3): 685-691. |
| Zhang MD, Cheng XQ, Xu X. Latest findings on polyketides/non-ribosomal peptides that are secon-dary metabolites of Streptococcus mutans [J]. J Si-chuan Univ (Med Sci), 2023, 54(3): 685-691. | |
| [13] | Zvanych R, Lukenda N, Li X, et al. Systems biosynthesis of secondary metabolic pathways within the oral human microbiome member Streptococcus mutans [J]. Mol Biosyst, 2015, 11(1): 97-104. |
| [14] | Pultar F, Hansen ME, Wolfrum S, et al. Mutanobactin D from the human microbiome: total synthesis, configurational assignment, and biological evaluation[J]. J Am Chem Soc, 2021, 143(27): 10389-10402. |
| [15] | Li Y, Tan J, Wang Q, et al. Comparing the indivi-dual effects of metformin and rosiglitazone and their combination in obese women with polycystic ovary syndrome: a randomized controlled trial[J]. Fertil Steril, 2020, 113(1): 197-204. |
| [16] | Li Y, Liu L, Zhang G, et al. Potashchelins, a suite of lipid siderophores bearing both L-threo and L-erythro beta-hydroxyaspartic acids, acquired from the potash-salt-ore-derived extremophile Halomonas sp. MG34[J]. Front Chem, 2020, 8: 197. |
| [17] | Chattoraj P, Banerjee A, Biswas S, et al. ClpP of Streptococcus mutans differentially regulates expression of genomic islands, mutacin production, and antibiotic tolerance[J]. J Bacteriol, 2010, 192(5): 1312-1323. |
| [18] | Waterhouse JC, Russell RRB. Dispensable genes and foreign DNA in Streptococcus mutans [J]. Microbiology, 2006, 152(Pt 6): 1777-1788. |
| [19] | Waterhouse JC, Swan DC, Russell RR. Comparative genome hybridization of Streptococcus mutans strains[J]. Oral Microbiol Immunol, 2007, 22(2): 103-110. |
| [20] | Konanov DN, Krivonos DV, Ilina EN, et al. BioCAT: search for biosynthetic gene clusters produ-cing nonribosomal peptides with known structure[J]. Comput Struct Biotechnol J, 2022, 20: 1218-1226. |
| [21] | Chattoraj P, Mohapatra SS, Rao JL, et al. Regulation of transcription by SMU.1349, a TetR family regulator, in Streptococcus mutans [J]. J Bacteriol, 2011, 193(23): 6605-6613. |
| [22] | Biswas I, Mohapatra SS. CovR alleviates transcriptional silencing by a nucleoid-associated histone-like protein in Streptococcus mutans [J]. J Bacteriol, 2012, 194(8): 2050-2061. |
| [23] | Lukenda N. Exploring the role of nonribosomal peptides in the human microbiome through the oral commensal Streptococcus mutans, the probiotic Lactobacillus plantarum, and Crohn’s disease associa-ted Faecalibacterium prausnitzii [D]. Ontario: McMaster University, 2012. |
| [24] | Wang X, Du L, You J, et al. Fungal biofilm inhibitors from a human oral microbiome-derived bacte-rium[J]. Org Biomol Chem, 2012, 10: 2044-2050. |
| [25] | Wang X. Activation of fungal silent biosythetic pathways by epigenetic modification[D]. Norman: University of Oklahoma, 2011. |
| [26] | Joyner PM, Liu J, Zhang Z, et al. Mutanobactin A from the human oral pathogen Streptococcus mutans is a cross-kingdom regulator of the yeast-mycelium transition[J]. Org Biomol Chem, 2010, 8: 5486-5489. |
| [27] | Wang M, Xie Z, Tang S, et al. Reductase of mutanobactin synthetase triggers sequential C-C macrocyclization, C-S bond formation, and C-C bond clea-vage[J]. Org Lett, 2020, 22(3): 960-964. |
| [28] | Wang YQ, Cao W, Merritt J, et al. Characterization of FtsH essentiality in Streptococcus mutans via genetic suppression[J]. Front Genet, 2021, 12: 659220. |
| [29] | Senadheera DB, Cordova M, Ayala EA, et al. Regulation of bacteriocin production and cell death by the VicRK signaling system in Streptococcus mutans [J]. J Bacteriol, 2012, 194(6): 1307-1316. |
| [30] | Rainey K, Wilson L, Barnes S, et al. Quantitative proteomics uncovers the interaction between a virulence factor and mutanobactin synthetases in Streptococcus mutans [J]. mSphere, 2019, 4(5): e0042919. |
| [31] | Tinder EL, Faustoferri RC, Buckley AA, et al. Ana-lysis of the Streptococcus mutans proteome during acid and oxidative stress reveals modules of protein coexpression and an expanded role for the TreR transcriptional regulator[J]. mSystems, 2022, 7(2): e0127221. |
| [32] | Wenderska IB, Latos A, Pruitt B, et al. Transcriptional profiling of the oral pathogen Streptococcus mutans in response to competence signaling peptide XIP[J]. mSystems, 2017, 2(1): e00102-e00116. |
| [33] | Cheng X, Zheng X, Zhou X, et al. Regulation of oxidative response and extracellular polysaccharide synthesis by a diadenylate cyclase in Streptococcus mutans [J]. Environ Microbiol, 2016, 18(3): 904-922. |
| [34] | Wen ZT, Liao S, Bitoun JP, et al. Streptococcus mutans displays altered stress responses while enhancing biofilm formation by Lactobacillus casei in mixed-species consortium[J]. Front Cell Infect Microbiol, 2017, 7: 524. |
| [35] | Chen L, Walker AR, Burne RA, et al. Amino sugars reshape interactions between Streptococcus mutans and Streptococcus gordonii [J]. Appl Environ Microbiol, 2020, 87(1): e01459-e01420. |
| [36] | Bonmatin JM, Laprévote O, Peypoux F. Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents[J]. Comb Chem High Throughput Screen, 2003, 6(6): 541-556. |
| [37] | Hansen ME, Yasmin SO, Wolfrum S, et al. Total synthesis of Mutanobactins A, B from the human microbiome: macrocyclization and thiazepanone assembly in a single step[J]. Angew Chem Int Ed, 2022, 61(28): e202203051. |
| [38] | Kravina A. Total synthesis of epicolactone and synthetic studies on Mutanobactins A and C[D]. Zürich: Eidgenössische Technische Hochschule Zürich, 2018. |
| [1] | 周小洁,侯本祥. 基于深度学习技术诊断龋病方法的研究进展[J]. 国际口腔医学杂志, 2025, 52(5): 579-585. |
| [2] | 王建鑫,王舒婷,马雷,岳金,乔传跃,林凯杰,韩蕊. 牙面黑色素沉着与铁、龋病关系的研究进展[J]. 国际口腔医学杂志, 2025, 52(4): 456-465. |
| [3] | 赵南洋,吴娟娟,周洲,陈欣月,张旭彤,徐逸飞,戴泰鸣. 贵州省实施儿童口腔疾病综合干预项目地区与非干预地区12岁儿童口腔健康状况调查分析[J]. 国际口腔医学杂志, 2025, 52(4): 484-489. |
| [4] | 陈斌, 闫福华. 刷牙方法的选择:基于循证证据的再思考[J]. 国际口腔医学杂志, 2025, 52(2): 141-147. |
| [5] | 曹梦颖,石蕊,于瀚雯,刘程程. 遥感成像技术在口腔疾病诊疗应用的研究进展[J]. 国际口腔医学杂志, 2025, 52(1): 107-116. |
| [6] | 高若凡,夏斌. 基于慢性疾病管理理念的重度低龄儿童龋管理方法[J]. 国际口腔医学杂志, 2023, 50(3): 341-346. |
| [7] | 龚涛,李雨庆,周学东. 变异链球菌糖转运及其调控机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 506-510. |
| [8] | 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396. |
| [9] | 朱锦怡,樊琪,周媛,邹静,黄睿洁. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219. |
| [10] | 刘程程, 丁一. 妊娠期常见口腔感染性疾病的临床诊疗和管理策略[J]. 国际口腔医学杂志, 2021, 48(6): 621-628. |
| [11] | 范宇,程磊. 吸烟影响口腔微环境及其在龋病进展中的作用[J]. 国际口腔医学杂志, 2021, 48(5): 609-613. |
| [12] | 杨志雷,刘宝盈. 龋病牙菌斑微生态研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 506-514. |
| [13] | 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120. |
| [14] | 陈艳艳,彭显,周学东,程磊. 定量光导荧光技术在龋病及牙周疾病诊治中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 699-704. |
| [15] | 王晓波,林世耀,李霞. 母亲与儿童龋病关系的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 469-474. |
|
||