国际口腔医学杂志 ›› 2026, Vol. 53 ›› Issue (1): 91-97.doi: 10.7518/gjkq.2026107
Qiqi Shi(
),Xu Qin,Guangxun Zhu(
)
摘要:
牙周炎是一种由牙周致病菌引发的免疫炎症,失调的免疫反应和慢性炎症是导致牙周组织破坏的重要因素。铜死亡是一种新型的程序性细胞死亡形式,其由细胞内过量的铜离子所诱发,并靶向三羧酸循环过程。其以线粒体硫辛酰化蛋白质异常寡聚化和铁硫(Fe-S)簇蛋白质丢失为特征。铜死亡在心血管疾病、神经退行性疾病、癌症等多种疾病的发生发展中均发挥了不容忽视的作用。近期研究表明,铜死亡相关基因通过调控免疫细胞及细胞因子参与牙周炎发病,其异常表达反映疾病状态并辅助临床诊断,为牙周炎治疗提供新靶点。基于此,本文就铜死亡的分子机制及其在牙周炎发生发展中的作用等方面的研究进展作一综述。
中图分类号:
| [1] | Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586): 1254-1261. |
| [2] | Zhao G, Sun HJ, Zhang T, et al. Copper induce zebrafish retinal developmental defects via triggering stresses and apoptosis[J]. Cell Commun Signal, 2020, 18(1): 45. |
| [3] | Liao JZ, Yang F, Tang ZX, et al. Inhibition of Caspase-1-dependent pyroptosis attenuates copper-induced apoptosis in chicken hepatocytes[J]. Ecotoxicol Environ Saf, 2019, 174: 110-119. |
| [4] | Tao XQ, Wan XL, Wu D, et al. A tandem activation of NLRP3 inflammasome induced by copper oxide nanoparticles and dissolved copper ion in J774A.1 macrophage[J]. J Hazard Mater, 2021, 411: 125134. |
| [5] | Chen LY, Min JX, Wang FD. Copper homeostasis and cuproptosis in health and disease[J]. Signal Transduct Target Ther, 2022, 7: 378. |
| [6] | Li XG, Zhou WB, Zhu C, et al. Multi-omics analysis reveals prognostic and therapeutic value of cuproptosis-related lncRNAs in oral squamous cell carcinoma[J]. Front Genet, 2022, 13: 984911. |
| [7] | Yuan D, Li XQ, Qu FW, et al. Landscape and the immune patterns of cuproptosis in oral squamous cell carcinoma[J]. J Oral Pathol Med, 2023, 52(10): 951-960. |
| [8] | Wei BW, Wang AH, Liu W, et al. Identification of immunological characteristics and cuproptosis-rela-ted molecular clusters in primary Sjögren’s syndrome[J]. Int Immunopharmacol, 2024, 126: 111251. |
| [9] | Oliveri V. Biomedical applications of copper ionophores[J]. Coord Chem Rev, 2020, 422: 213474. |
| [10] | Nagai M, Vo NH, Shin Ogawa L, et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells[J]. Free Radic Biol Med, 2012, 52(10): 2142-2150. |
| [11] | Falls-Hubert KC, Butler AL, Gui K, et al. Disulfiram causes selective hypoxic cancer cell toxicity and radio-chemo-sensitization via redox cycling of copper[J]. Free Radic Biol Med, 2020, 150: 1-11. |
| [12] | Skrott Z, Mistrik M, Andersen KK, et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4[J]. Nature, 2017, 552(7684): 194-199. |
| [13] | Zhang JM, Duan DZ, Xu JQ, et al. Redox-dependent copper carrier promotes cellular copper uptake and oxidative stress-mediated apoptosis of cancer cells[J]. ACS Appl Mater Interfaces, 2018, 10(39): 33010-33021. |
| [14] | Ji P, Wang P, Chen H, et al. Potential of copper and copper compounds for anticancer applications[J]. Pharmaceuticals (Basel), 2023, 16(2): 234. |
| [15] | Zulkifli M, Spelbring AN, Zhang YT, et al. FDX1-dependent and independent mechanisms of elesclomol-mediated intracellular copper delivery[J]. Proc Natl Acad Sci U S A, 2023, 120(10): e2216722120. |
| [16] | Braymer JJ, Freibert SA, Rakwalska-Bange M, et al. Mechanistic concepts of iron-sulfur protein biogenesis in Biology[J]. Biochim Biophys Acta Mol Cell Res, 2021, 1868(1): 118863. |
| [17] | Tsvetkov P, Detappe A, Cai K, et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress[J]. Nat Chem Biol, 2019, 15(7): 681-689. |
| [18] | Zhang M, Liu Z, Le Y, et al. Iron-sulfur clusters: a key factor of regulated cell death in cancer[J]. Oxid Med Cell Longev, 2022, 2022: 7449941. |
| [19] | Lill R, Freibert SA. Mechanisms of mitochondrial iron-sulfur protein biogenesis[J]. Annu Rev Biochem, 2020, 89: 471-499. |
| [20] | Yi HS, Chen T, He GT, et al. Retinoic acid mitigates the NSC319726-induced spermatogenesis dysfunction through cuproptosis-independent mechanisms[J]. Cell Biol Toxicol, 2024, 40(1): 26. |
| [21] | Lin CH, Chin Y, Zhou M, et al. Protein lipoylation: mitochondria, cuproptosis, and beyond[J]. Trends Biochem Sci, 2024, 49(8): 729-744. |
| [22] | Dreishpoon MB, Bick NR, Petrova B, et al. FDX1 regulates cellular protein lipoylation through direct binding to LIAS[J]. J Biol Chem, 2023, 299(9): 105046. |
| [23] | Linder MC. Copper homeostasis in mammals, with emphasis on secretion and excretion. a review[J]. Int J Mol Sci, 2020, 21(14): 4932. |
| [24] | Kim H, Wu XB, Lee J. SLC31 (CTR) family of copper transporters in health and disease[J]. Mol Aspects Med, 2013, 34(2/3): 561-570. |
| [25] | Tsang T, Davis CI, Brady DC. Copper biology[J]. Curr Biol, 2021, 31(9): R421-R427. |
| [26] | Xue Q, Kang R, Klionsky DJ, et al. Copper metabolism in cell death and autophagy[J]. Autophagy, 2023, 19(8): 2175-2195. |
| [27] | van den Berghe PVE, Klomp LWJ. Posttranslational regulation of copper transporters[J]. J Biol Inorg Chem, 2010, 15(1): 37-46. |
| [28] | Skopp A, Boyd SD, Ullrich MS, et al. Copper-zinc superoxide dismutase (Sod1) activation terminates interaction between its copper chaperone (Ccs) and the cytosolic metal-binding domain of the copper importer Ctr1[J]. Biometals, 2019, 32(4): 695-705. |
| [29] | Liu SY, Ge JY, Chu YT, et al. Identification of hub cuproptosis related genes and immune cell infiltration characteristics in periodontitis[J]. Front Immunol, 2023, 14: 1164667. |
| [30] | 赵丹丹, 郭子怡, 郭易阳, 等. 基于机器学习和生物信息学分析的铜死亡相关基因在牙周炎中的作用研究[J]. 中华老年口腔医学杂志, 2023, 21(6): 332-336. |
| Zhao DD, Guo ZY, Guo YY, et al. Role of cuproptosis-related genes in periodontitis based on machine learning and bioinformatics analysis[J]. Chin J Ge-riatr Dent, 2023, 21(6): 332-336. | |
| [31] | Liu N, He YQ, Chen XM, et al. Changes in cuproptosis-related gene expression in periodontitis: an integrated bioinformatic analysis[J]. Life Sci, 2024, 338: 122388. |
| [32] | Fu YY, Zhong CB, Cui JH, et al. A comprehensive analysis of the role of cuproptosis in periodontitis through integrated analysis of single-cell and bulk RNA sequencing[J]. Arch Med Sci, 2024, 20(4): 1349-1357. |
| [33] | Ebersole JL, Kirakodu SS, Nguyen LM, et al. Transcriptomic features of programmed and inflammatory cell death in gingival tissues[J]. Oral Dis, 2024, 30(8): 5274-5293. |
| [34] | Zhang LJ, Tsai IC, Ni ZH, et al. Copper chelation therapy attenuates periodontitis inflammation throu-gh the cuproptosis/autophagy/lysosome axis[J]. Int J Mol Sci, 2024, 25(11): 5890. |
| [35] | Maiti BK, Moura I, Moura JJG. Molybdenum-copper antagonism in metalloenzymes and anti-copper therapy[J]. Chembiochem, 2024, 25(6): e202300679. |
| [36] | Hou KL, Lin SK, Kok SH, et al. Increased expression of glutaminase in osteoblasts promotes macrophage recruitment in periapical lesions[J]. J Endod, 2017, 43(4): 602-608. |
| [37] | Yang J, Gao YC, Mao H, et al. Qiju Dihuang Pill protects the lens epithelial cells via alleviating cuproptosis in diabetic cataract[J]. J Ethnopharmacol, 2024, 333: 118444. |
| [38] | Xiao YX, Yin JM, Liu P, et al. Triptolide-induced cuproptosis is a novel antitumor strategy for the treatment of cervical cancer[J]. Cell Mol Biol Lett, 2024, 29(1): 113. |
| [1] | 陈可儿,包佳琦,孙伟莲. 颊壁形态影响牙周炎位点牙槽嵴保存的应用进展[J]. 国际口腔医学杂志, 2026, 53(1): 84-90. |
| [2] | 王诗雅,袁国华,邹静. 异位釉质的形成机制及临床诊疗策略[J]. 国际口腔医学杂志, 2025, 52(6): 713-721. |
| [3] | 陈禹黄,梁星,李然. 牙周炎患者缺失牙修复的临床考量及预后评估[J]. 国际口腔医学杂志, 2025, 52(6): 823-831. |
| [4] | 朱然,严静,孙卫斌,吴文蕾,刘玉. 服用抗血栓药物患者牙周基础治疗期间的出血风险管理[J]. 国际口腔医学杂志, 2025, 52(5): 670-676. |
| [5] | 李欢,原韶钟. 牙周炎与非酒精性脂肪性肝病相关性的研究进展[J]. 国际口腔医学杂志, 2025, 52(5): 677-683. |
| [6] | 祝舒钰,周静,谢志刚. 辅助性T细胞17与调节性T细胞之间的制衡效应调控口腔颌面部骨损伤修复的研究进展[J]. 国际口腔医学杂志, 2025, 52(4): 514-525. |
| [7] | 于寰,康健. 牙周内镜在口腔临床诊疗中的应用进展[J]. 国际口腔医学杂志, 2025, 52(4): 544-551. |
| [8] | 李天元, 朱彤欣, 柳庆, 董迎春, 陈斌. 间充质干细胞用于牙周再生临床疗效的系统评价与Meta分析[J]. 国际口腔医学杂志, 2025, 52(3): 296-307. |
| [9] | 别梦瑶,周婕妤,吴亚菲,赵蕾. 牙龈卟啉单胞菌影响血管平滑肌细胞调节性细胞死亡及表型转换的研究进展[J]. 国际口腔医学杂志, 2025, 52(3): 308-316. |
| [10] | 范兴丽,潘乐,赵家园,项秋猛,陈启林. 竞争性内源性RNA在牙周炎中的作用及机制的研究进展[J]. 国际口腔医学杂志, 2025, 52(3): 317-322. |
| [11] | 赵美林,赵依琼,黄姣. Ⅲ期C级牙周炎正畸患者上前牙龈乳头缺陷伴牙龈退缩1例[J]. 国际口腔医学杂志, 2025, 52(3): 333-340. |
| [12] | 李晶,康健. 牙周微创手术中再生材料选择及疗效的研究进展[J]. 国际口腔医学杂志, 2025, 52(2): 161-168. |
| [13] | 张潇月,陈舒泽,周婕妤,程磊,赵蕾. 具核梭杆菌经铁死亡途径破坏体外肠道上皮屏障模型的研究[J]. 国际口腔医学杂志, 2025, 52(2): 183-194. |
| [14] | 钟良军. 数字化技术在重度牙周炎治疗中的应用[J]. 国际口腔医学杂志, 2025, 52(1): 1-10. |
| [15] | 程守正,李太文,赵蕾. 血清淀粉样蛋白A与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2025, 52(1): 117-122. |
|
||