国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (6): 806-815.doi: 10.7518/gjkq.2025097

• 综述 • 上一篇    下一篇

口腔及肠道微生物与儿童全身系统性疾病的相关性研究进展

冯涵果1,2,3(),饶南荃1,2,3,曾馨仪1,2,3,余思源1,2,3,刘娟1,2,3()   

  1. 1.昆明医科大学附属口腔医院儿童口腔科 昆明 650106
    2.云南省口腔医院儿童口腔科 昆明 650106
    3.云南省口腔医学重点实验室 昆明医科大学口腔医学院 昆明 650106
  • 收稿日期:2024-10-10 修回日期:2025-01-07 出版日期:2025-11-01 发布日期:2025-10-23
  • 通讯作者: 刘娟
  • 作者简介:冯涵果,硕士,Email:fenghanguo2022@163.com
  • 基金资助:
    国家临床重点专科儿童口腔科建设项目(20230610);云南省教育厅科学研究基金(2025J0168);国家临床重点专科儿童口腔科建设项目临床科研青年基金项目(EYQ2024002)

Research progress on the relationship among oral microbiota, gut microbiota, and systemic diseases in children

Hanguo Feng1,2,3(),Nanquan Rao1,2,3,Xinyi Zeng1,2,3,Siyuan Yu1,2,3,Juan Liu1,2,3()   

  1. 1.Dept. of Pediatric Dentistry, the Affiliated Stomatology Hospital, Kunming Medical University, Kunming 650106, China
    2.Dept. of Pediatric Dentistry, Stomatology Hospital of Yunnan Province, Kunming 650106, China
    3.Yunnan Key Laboratory of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650106, China
  • Received:2024-10-10 Revised:2025-01-07 Online:2025-11-01 Published:2025-10-23
  • Contact: Juan Liu
  • Supported by:
    National Key Clinical Specialty Development Project of Pediatric Dentistry Division(20230610);Scienti-fic Research Project of Education Department of Yunnan Province(2025J0168);Clinical Scientific Research Project of National Key Clinical Specialty Development Project of Pediatric Dentistry Division(EYQ2024002)

摘要:

口腔是消化道的起点。患有全身系统性疾病的个体肠道中,口腔来源的细菌水平增加。口腔微生物可以通过多种途径作用于肠道,导致肠道微生物失调和胃肠黏膜损伤等。与成人相比,儿童的口腔和肠道微生物随自身生长发育而不断发展,对外界刺激更加敏感。儿童期是微生物干预的重要时期。本文对口腔、肠道微生物的建立和发展,以及两者在儿童全身系统性疾病中的作用关系进行综述,为疾病的预防、诊断和治疗提供新的思路。

关键词: 口腔微生物, 肠道微生物, 儿童, 系统性疾病

Abstract:

The oral cavity is a gateway to the gastrointestinal tract. The relative abundance of common oral bacteria in the intestine of individuals with systemic diseases increases. The oral microbiota interact with the intestinal microbiota, which induces intestinal dysbiosis and intestinal mucosa damage. Compared with the oral and intestinal microbiota of adults, those of children are more sensitive to external stimuli, and they change dynamically with growth and development. Childhood may be the critical time for microbiota interventions to prevent diseases. This review discusses the establishment and development of oral and intestinal microbiota. The relationship between oral microbiota and intestinal microbiota in children with systemic diseases is also determined. This review offers new avenues for the prevention, diagnosis, and treatment of diseases.

Key words: oral microbiomes, gastrointestinal microbiomes, children, system diseases

中图分类号: 

  • R725.9

表 1

与儿童肥胖相关的口腔、肠道微生物及其代谢产物"

作者

研究对象

年龄/国家

检测方法口腔肠道
Ma等[25]3~5岁/中国对唾液、粪便样本进行第3代长距离DNA测序

微生物多样性↑,F/B↑;

丁酸弧菌属(Butyrivibrio)↑,异普雷沃菌属(Alloprevotella)↓

微生物多样性↓,F/B↑;

梭菌纲(Clostridia)、瘤胃球菌科(Ruminococcaceae)和Faecalibacterium↑,拟杆菌门、克雷伯氏菌属(Klebsiella)和柠檬酸杆菌属(Citrobacter)↓

Mameli等[26]10~12岁/意大利对唾液样本进行16S rDNA测序

微生物丰富度↓;

变形菌纲(Gammaproteobacteria)和Negativicutes↓

/
Mervish等[27]10~17岁/美国对唾液样本进行16S rRNA测序

微生物丰富度↓;

巨球形菌属(Megasphaera)↑,乳杆菌属(Lactobacillus)↓

/
Li等[28]8~12岁/中国对粪便样本进行16S rRNA测序/

微生物丰富度↓,F/B↑;

厚壁菌门、梭菌纲、普雷沃菌属和肠杆菌科(Enterobacteriaceae)↑,拟杆菌门、双歧杆菌目(Bifidobacteriales)、Akkermansia muciniphila和乳杆菌属↓

Wei等[29]6~9岁/中国对粪便样本进行16S rRNA测序、高效液相色谱检测/布劳特菌属(Blautia)和罗氏菌属(Rothia)↑,Ruminococcus gavusFlavonifractor lasttii↓,SCFAs↑

表 2

与儿童T1D相关的口腔、肠道微生物及其代谢产物"

作者

研究对象

年龄/国家

检测方法口腔肠道
Wang等[12]7~11岁/中国对口咽、粪便样本进行16S rRNA测序链球菌属、普雷沃菌属、纤毛菌属(Leptotrichia)和奈瑟球菌属(Neisseria)↑布劳特菌属、拟杆菌属和Eubacterium_hallii↑,氨基酸生成、脂肪酸代谢和核苷酸糖生物合成↑
Yuan等[36]3~15岁/中国对唾液样本进行16S rRNA 测序

微生物丰富度和多样性↓;

厚壁菌门、放线菌门(Actinobacteria)、链球菌属、奈瑟球菌属↑;拟杆菌门、韦荣球菌属、普雷沃菌属和梭杆菌属(Fusobacterium)↓

/
Ho等[37]9~5岁/加拿大对粪便样本进行16S rRNA测序/

微生物多样性↑;

链球菌属、Roseburia inulinivoransFaecalibacterium

Yuan等[38]5~11岁/中国分别对粪便、血液样本进行16S rRNA测序和代谢组学分析/

微生物丰富度和多样性↓;

厚壁菌门和Escherichia shigella↑,拟杆菌门、变形菌门(Proteobacteria)、Faecalibacterium和布劳特菌属↓,丁酸盐生成和胆汁酸代谢↓,LPS生物合成↑

表 3

与儿童IBD相关的口腔、肠道微生物及其代谢产物"

作者研究对象年龄/国家检测方法口腔肠道
Monleón-Getino等[45]6~18岁/西班牙对唾液、粪便样本进行宏基因组学研究

微生物多样性↓;

缓症链球菌(Streptococcus mitis)↑

微生物多样性↓;

缓症链球菌和血链球菌(Streptococcus sanguinis)↑ ,脆弱拟杆菌(Bacteriodes fragilis)↓

Elmaghrawy等[46]9~14 岁/爱尔兰对舌背微生物进行16S rRNA测序

微生物丰富度和多样性↓;

链球菌属、乳杆菌属和卟啉单胞菌属(Porphyromonas)↑,韦荣球菌属、口腔杆菌属(Oribacterium)、普雷沃菌属和梭杆菌属↓

/
Shaw等[47]≤17 岁/美国对粪便样本进行16S rRNA测序/

微生物多样性↓;

Akkermansia、梭杆菌属和韦荣球菌属↑,粪球菌属(Coprococcus)和Faecalibacterium↓,粪便钙卫蛋白水平↑

Schirmer等[48]4~16岁/美国对粪便样本进行16S rRNA测序,直肠活检和血清学分析/

微生物多样性↓;

咽峡炎链球菌(Streptococcus anginosus)、小韦荣菌(Veillonella parvula)、副流感嗜血杆菌(Haemophilus parainfluenzae)↑ ,毛螺旋菌科(Lachnospiraceae)↓,粪便钙卫蛋白水平↑,免疫球蛋白 A、抗外膜孔蛋白↓

表 4

与儿童乳糜泻相关的口腔、肠道微生物及其代谢产物"

作者研究对象年龄/国家检测方法口腔肠道
Francavilla等[53]8~11岁/意大利对唾液样本进行16S rRNA测序和代谢组学分析血链球菌属、卟啉单胞菌属属、南锡普雷沃菌(Prevotella nanceiensis)↑,新月形单胞菌属(Selenomonas)、小韦荣菌↓,挥发性有机化合物、醇类和酚类↓/
Ercolini等[54]7~9岁/意大利对唾液样本进行16S rRNA测序

微生物多样性↓;

短链小球菌属(Granulicatella)、卟啉单胞菌属和奈瑟球菌属↑,梭菌属、韦荣球菌属和普雷沃菌属↓,氨基酸、维生素和辅助因子代谢↑

/
Leonard等[55]≤1 岁/英国对粪便样本进行宏基因组学、代谢组学分析/肠球菌属(Enterococcus)↑,链球菌属、韦荣球菌属↓,羟基苯乙酸↑,叶酸生物合成↓
Girdhar等[56]2~5岁/美国对粪便样本进行16S rRNA测序、代谢组学分析/瘤胃球菌科、梭菌属↑,Akkermansia、普雷沃菌属↓

表 5

与儿童ASD相关的口腔、肠道微生物及其代谢产物"

作者研究对象年龄/国家检测方法口腔肠道
Kong等[7]平均15岁/美国对唾液、粪便样本进行16S rRNA测序小单胞菌属(Parvimonas)↓,芽孢杆菌纲(Bacilli)未定义的属和丙酸杆菌属(Propionibacte-rium)↑

F/B↑;

变形菌门、短链小球菌属↑,Collinsella和优杆菌属(Eubacterium)↓

Manghi等[64]平均9岁/意大利对唾液样本进行宏基因组学分析普雷沃菌属、Actinomyces hongkongensis和龋齿罗氏菌(Rothia dentocariosa)↑,多巴胺和γ-氨基丁酸降解↑,谷氨酸代谢↓/
Qiao等[65]9~11岁/中国对唾液、龈上菌斑样本进行16S rRNA测序

微生物多样性和丰富度↓;

嗜血菌属(Haemophilus)、链球菌属↓,普雷沃菌属、新月形单胞菌属、放线菌属(Actinomyces)、卟啉单胞菌属、梭杆菌属↓

/
Jones等[66]1~3岁/美国对粪便样本进行16S rRNA测序、粪便SCFA浓度分析/肠杆菌科↑,韦荣球菌属↓,SCFA↑
Dan等[67]1~13岁/中国对粪便样本进行宏基因组学和代谢组学分析/Dialister、Escherichia shigella↑,普雷沃菌属和Megamonas↓,γ-氨基丁酸前体↑,多巴胺代谢↓
[1] Ronan V, Yeasin R, Claud EC. Childhood development and the microbiome-the intestinal microbiota in maintenance of health and development of di-sease during childhood development[J]. Gastroente-rology, 2021, 160(2): 495-506.
[2] 程兴群, 徐欣, 周学东. 口腔微生物与肠道微生物的关系[J]. 华西口腔医学杂志, 2017, 35(3): 322-327.
Cheng XQ, Xu X, Zhou XD. Relationship between oral and gut microbes[J]. West China J Stomatol, 2017, 35(3): 322-327.
[3] Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4): 837-848.
[4] Xiao J, Fiscella KA, Gill SR. Oral microbiome: possible harbinger for children’s health[J]. Int J Oral Sci, 2020, 12(1): 12.
[5] Xu J, Zhang Y, Fang XH, et al. The oral bacterial microbiota facilitates the stratification for ulcerative colitis patients with oral ulcers[J]. Ann Clin Microbiol Antimicrob, 2023, 22(1): 99.
[6] Abdelbary MMH, Hatting M, Bott A, et al. The oral-gut axis: salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease[J]. Front Cell Infect Microbiol, 2022, 12: 1010853.
[7] Kong XJ, Liu J, Cetinbas M, et al. New and preliminary evidence on altered oral and gut microbiota in individuals with autism spectrum disorder (ASD): implications for ASD diagnosis and subtyping based on microbial biomarkers[J]. Nutrients, 2019, 11(9): 2128.
[8] Kitamoto S, Nagao-Kitamoto H, Jiao YZ, et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis[J]. Cell, 2020, 182(2): 447-462.e14.
[9] Kato T, Yamazaki K, Nakajima M, et al. Oral admini-stration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome[J]. mSphere, 2018, 3(5): e00460-e00418.
[10] Wang AL, Zhai ZH, Ding YY, et al. The oral-gut microbiome axis in inflammatory bowel disease: from inside to insight[J]. Front Immunol, 2024, 15: 1430001.
[11] Wang W, Yan YQ, Yu FR, et al. Role of oral and gut microbiota in childhood obesity[J]. Folia Microbiol, 2023, 68(2): 197-206.
[12] Wang LM, Gong C, Wang RY, et al. A pilot study on the characterization and correlation of oropharyngeal and intestinal microbiota in children with type 1 diabetes mellitus[J]. Front Pediatr, 2024, 12: 1382466.
[13] Esposito MV, Nardelli C, Granata I, et al. Setup of quantitative PCR for oral Neisseria spp. evaluation in celiac disease diagnosis[J]. Diagnostics (Basel), 2019, 10(1): 12.
[14] Chen B, Wang JW, Wang Y, et al. Oral microbiota dysbiosis and its association with Henoch-Schönlein Purpura in children[J]. Int Immunopharmacol, 2018, 65: 295-302.
[15] Frid P, Baraniya D, Halbig J, et al. Salivary oral microbiome of children with juvenile idiopathic arthritis: a Norwegian cross-sectional study[J]. Front Cell Infect Microbiol, 2020, 10: 602239.
[16] Zhu WX, Wu YL, Liu H, et al. Gut-lung axis: microbial crosstalk in pediatric respiratory tract infections[J]. Front Immunol, 2021, 12: 741233.
[17] Martin R, Makino H, Cetinyurek Yavuz A, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the develo-ping gut microbiota[J]. PLoS One, 2016, 11(6): e0158498.
[18] Craig SJC, Blankenberg D, Parodi ACL, et al. Child weight gain trajectories linked to oral microbiota composition[J]. Sci Rep, 2018, 8(1): 14030.
[19] Bäckhed F, Roswall J, Peng YQ, et al. Dynamics and stabilization of the human gut microbiome du-ring the first year of life[J]. Cell Host Microbe, 2015, 17(6): 852.
[20] Oba PM, Holscher HD, Mathai RA, et al. Diet influen-ces the oral microbiota of infants during the first six months of life[J]. Nutrients, 2020, 12(11): 3400.
[21] Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402): 222-227.
[22] Mason MR, Chambers S, Dabdoub SM, et al. Cha-racterizing oral microbial communities across dentition states and colonization niches[J]. Microbiome, 2018, 6(1): 67.
[23] Suárez-Martínez C, Santaella-Pascual M, Yagüe-Guirao G, et al. Infant gut microbiota colonization: influence of prenatal and postnatal factors, focusing on diet[J]. Front Microbiol, 2023, 14: 1236254.
[24] Hampl SE, Hassink SG, Skinner AC, et al. Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity[J]. Pedia-trics, 2023, 151(2): e2022060640.
[25] Ma T, Wu ZY, Lin J, et al. Characterization of the oral and gut microbiome in children with obesity aged 3 to 5 years[J]. Front Cell Infect Microbiol, 2025, 13: 1102650.
[26] Mameli C, Cattaneo C, Panelli S, et al. Taste perception and oral microbiota are associated with obesity in children and adolescents[J]. PLoS One, 2019, 14(9): e0221656.
[27] Mervish NA, Hu JZ, Hagan LA, et al. Associations of the oral microbiota with obesity and menarche in inner city girls[J]. J Child Obes, 2019, 4(1): 2.
[28] Li XM, Lv Q, Chen YJ, et al. Association between childhood obesity and gut microbiota: 16S rRNA gene sequencing-based cohort study[J]. World J Gastroenterol, 2024, 30(16): 2249-2257.
[29] Wei YH, Liang JJ, Su YX, et al. The associations of the gut microbiome composition and short-chain fatty acid concentrations with body fat distribution in children[J]. Clin Nutr, 2021, 40(5): 3379-3390.
[30] CMDSP Indiani, Rizzardi KF, Castelo PM, et al. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review[J]. Child Obes, 2018, 14(8): 501-509.
[31] Teyani R, Moniri NH. Gut feelings in the islets: the role of the gut microbiome and the FFA2 and FFA3 receptors for short chain fatty acids on β-cell function and metabolic regulation[J]. Br J Pharmacol, 2023, 180(24): 3113-3129.
[32] Grahnemo L, Nethander M, Coward E, et al. Cross-sectional associations between the gut microbe Ruminococcus gnavus and features of the metabolic syndrome[J]. Lancet Diabetes Endocrinol, 2022, 10(7): 481-483.
[33] Stefura T, Zapała B, Gosiewski T, et al. Differences in compositions of oral and fecal microbiota between patients with obesity and controls[J]. Medicina, 2021, 57(7): 678.
[34] Quattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes[J]. Lancet (London, England), 2023, 401(10394): 2149-2162.
[35] de Groot PF, Belzer C, Aydin Ö, et al. Distinct fecal and oral microbiota composition in human type 1 dia-betes, an observational study[J]. PLoS One, 2017, 12(12): e0188475.
[36] Yuan XX, Wu J, Chen RM, et al. Characterization of the oral microbiome of children with type 1 diabetes in the acute and chronic phases[J]. J Oral Microbiol, 2022, 14(1): 2094048.
[37] Ho J, Nicolucci AC, Virtanen H, et al. Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 diabetes[J]. J Clin Endocrinol Metab, 2019, 104(10): 4427-4440.
[38] Yuan XX, Wang RR, Han B, et al. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes[J]. Nat Commun, 2022, 13(1): 6356.
[39] Kunath BJ, Hickl O, Queirós P, et al. Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integratedmulti-omic analyses[J]. Microbiome, 2022, 10(1): 243.
[40] Takahashi N, Saito K, Schachtele CF, et al. Acid to-lerance and acid-neutralizing activity of Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum [J]. Oral Microbiol Immunol, 1997, 12(6): 323-328.
[41] Kaci G, Goudercourt D, Dennin V, et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract[J]. Appl Environ Microbiol, 2014, 80(3): 928-934.
[42] Biassoni R, di Marco E, Squillario M, et al. Gut microbiota in T1DM-onset pediatric patients: machine-learning algorithms to classify microorganisms as disease linked[J]. J Clin Endocrinol Metab, 2020, 105(9): dgaa407.
[43] Rosell-Mases E, Santiago A, Corral-Pujol M, et al. Mutual modulation of gut microbiota and the immune system in type 1 diabetes models[J]. Nat Commun, 2023, 14(1): 7770.
[44] Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease[J]. Nature, 2012, 491(7422): 119-124.
[45] Monleón-Getino A, Pujol-Muncunill G, Méndez Viera J, et al. A pilot study of the use of the oral and faecal microbiota for the diagnosis of ulcerative colitis and Crohn’s disease in a paediatric population[J]. Front Pediatr, 2023, 11: 1220976.
[46] Elmaghrawy K, Fleming P, Fitzgerald K, et al. The oral microbiome in treatment-Naïve paediatric IBD patients exhibits dysbiosis related to disease severity that resolves following therapy[J]. J Crohns Colitis, 2023, 17(4): 553-564.
[47] Shaw KA, Bertha M, Hofmekler T, et al. Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease[J]. Genome Med, 2016, 8(1): 75.
[48] Schirmer M, Denson L, Vlamakis H, et al. Compositional and temporal changes in the gut microbiome of pediatric ulcerative colitis patients are linked to disease course[J]. Cell Host Microbe, 2018, 24(4): 600-610.e4.
[49] 张浩楠, 周学东, 徐欣, 等. 口腔微生物与炎症性肠病的关系[J]. 华西口腔医学杂志, 2019, 37(4): 443-449.
Zhang HN, Zhou XD, Xu X, et al. Oral microbiota and inflammatory bowel disease[J]. West China J Stomatol, 2019, 37(4): 443-449.
[50] Atarashi K, Suda W, Luo CW, et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation[J]. Science, 2017, 358(6361): 359-365.
[51] Lebwohl B, Rubio-Tapia A. Epidemiology, presentation, and diagnosis of celiac disease[J]. Gastroentero-logy, 2021, 160(1): 63-75.
[52] Sahin Y. Celiac disease in children: a review of the literature[J]. World J Clin Pediatr, 2021, 10(4): 53-71.
[53] Francavilla R, Ercolini D, Piccolo M, et al. Salivary microbiota and metabolome associated with celiac disease[J]. Appl Environ Microbiol, 2014, 80(11): 3416-3425.
[54] Ercolini D, Francavilla R, Vannini L, et al. From an imbalance to a new imbalance: Italian-style gluten-free diet alters the salivary microbiota and metabolome of African celiac children[J]. Sci Rep, 2015, 5: 18571.
[55] Leonard MM, Karathia H, Pujolassos M, et al. Multi-omics analysis reveals the influence of gene-tic and environmental risk factors on developing gut microbiota in infants at risk of celiac disease[J]. Microbiome, 2020, 8(1): 130.
[56] Girdhar K, Dogru YD, Huang Q, et al. Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac di-sease[J]. Microbiome, 2023, 11(1): 9.
[57] Iaffaldano L, Granata I, Pagliuca C, et al. Oropharyngeal microbiome evaluation highlights Neisseria abundance in active celiac patients[J]. Sci Rep, 2018, 8(1): 11047.
[58] D’Argenio V, Casaburi G, Precone V, et al. Metagenomics reveals dysbiosis and a potentially pathoge-nic N. flavescens strain in duodenum of adult celiac patients[J]. Am J Gastroenterol, 2016, 111(6): 879-890.
[59] Laparra JM, Olivares M, Gallina O, et al. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model[J]. PLoS One, 2012, 7(2): e30744.
[60] Fernandez-Feo M, Wei G, Blumenkranz G, et al. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac di-sease and gluten sensitivity[J]. Clin Microbiol Infect, 2013, 19(9): E386-E394.
[61] Zeidan J, Fombonne E, Scorah J, et al. Global prevalence of autism: a systematic review update[J]. Autism Res, 2022, 15(5): 778-790.
[62] Al-Beltagi M. Autism medical comorbidities[J]. World J Clin Pediatr, 2021, 10(3): 15-28.
[63] Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, et al. A comprehensive review on the role of the gut microbiome in human neurological disorders[J]. Clin Microbiol Rev, 2022, 35(1): e0033820.
[64] Manghi P, Filosi M, Zolfo M, et al. Large-scale metagenomic analysis of oral microbiomes reveals markers for autism spectrum disorders[J]. Nat Commun, 2024, 15(1): 9743.
[65] Qiao YN, Wu MT, Feng Y, et al. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls[J]. Sci Rep, 2018, 8(1): 1597.
[66] Jones J, Reinke SN, Mousavi-Derazmahalleh M, et al. Changes to the gut microbiome in young children showing early behavioral signs of autism[J]. Front Microbiol, 2022, 13: 905901.
[67] Dan Z, Mao XH, Liu QS, et al. Altered gut micro-bial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder[J]. Gut Microbes, 2020, 11(5): 1246-1267.
[68] Bowland GB, Weyrich LS. The oral-microbiome-brain axis and neuropsychiatric disorders: an anthropological perspective[J]. Front Psychiatry, 2022, 13: 810008.
[69] Anand S, Kaur H, Mande SS. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens[J]. Front Microbiol, 2016, 7: 1945.
[70] Alharthi A, Alhazmi S, Alburae N, et al. The human gut microbiome as a potential factor in autism spectrum disorder[J]. Int J Mol Sci, 2022, 23(3): 1363.
[71] Dong JJ, Li W, Wang Q, et al. Relationships between oral microecosystem and respiratory diseases[J]. Front Mol Biosci, 2021, 8: 718222.
[72] Heijink IH, Kuchibhotla VNS, Roffel MP, et al. Epithelial cell dysfunction, a major driver of asthma development[J]. Allergy, 2020, 75(8): 1902-1917.
[73] Olszak T, An DD, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function[J]. Science, 2012, 336(6080): 489-493.
[1] 赵南洋,吴娟娟,周洲,陈欣月,张旭彤,徐逸飞,戴泰鸣. 贵州省实施儿童口腔疾病综合干预项目地区与非干预地区12岁儿童口腔健康状况调查分析[J]. 国际口腔医学杂志, 2025, 52(4): 484-489.
[2] 邓含知,赵蕾. 孕妇口腔微生物影响新生儿口腔及全身健康的研究进展[J]. 国际口腔医学杂志, 2025, 52(4): 552-558.
[3] 韩峰,朱凤节,高黎. 儿童继发龋的危险因素及防治策略分析[J]. 国际口腔医学杂志, 2025, 52(1): 76-81.
[4] 冯国琴,李亚迅,史晓彤,刘佳佳,刘君瑜,王翔宇. 婴幼儿喂养方式与低龄儿童龋相关性的研究进展[J]. 国际口腔医学杂志, 2025, 52(1): 92-98.
[5] 蒋思鑫,施雯锦,罗小波,陈谦明. 儿童病毒性口炎诊断及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 519-531.
[6] 吴礼安. 部分断冠粘接术在儿童恒前牙复杂冠根折中的初步应用[J]. 国际口腔医学杂志, 2023, 50(6): 623-631.
[7] 高若凡,夏斌. 基于慢性疾病管理理念的重度低龄儿童龋管理方法[J]. 国际口腔医学杂志, 2023, 50(3): 341-346.
[8] 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216.
[9] 任海霞,刘颍凤,梁慧敏,李家勇,温春琴,王春梅. 虚拟现实技术在儿童深龋治疗中对牙科畏惧的干预效果研究[J]. 国际口腔医学杂志, 2022, 49(5): 529-536.
[10] 贺红. 伴扁桃体肥大类错𬌗畸形儿童早期矫治的临床诊疗策略[J]. 国际口腔医学杂志, 2022, 49(3): 249-254.
[11] 朱锦怡,樊琪,周媛,邹静,黄睿洁. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219.
[12] 范宇,程磊. 吸烟影响口腔微环境及其在龋病进展中的作用[J]. 国际口腔医学杂志, 2021, 48(5): 609-613.
[13] 李诗佳,陈秋宇,邹静,黄睿洁. 尼古丁对口腔细菌单独或混合培养时菌群数目调控的研究[J]. 国际口腔医学杂志, 2021, 48(3): 305-311.
[14] 邓晓宇,张蕴涵,邹静. 低龄儿童龋的早期生物学管理[J]. 国际口腔医学杂志, 2020, 47(5): 581-588.
[15] 邓晓宇,仁青色格,霍媛媛,崔晨,亓文婷,韩轩,黄睿洁,周媛,朱林,邹静,旦增念扎. 西藏自治区城区和牧区儿童患龋情况与相关因素分析[J]. 国际口腔医学杂志, 2020, 47(4): 383-390.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!