国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (6): 816-822.doi: 10.7518/gjkq.2025064

• 综述 • 上一篇    下一篇

大气冷等离子体在口腔组织再生中的研究进展

姚琳1(),邹玲1,刘显2()   

  1. 1.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;四川大学华西口腔医院牙体牙髓病科 成都 610041
    2.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;四川大学华西口腔医院口腔急诊科 成都 610041
  • 收稿日期:2024-06-30 修回日期:2025-02-21 出版日期:2025-11-01 发布日期:2025-10-23
  • 通讯作者: 刘显
  • 作者简介:姚琳,硕士,Email:yaolincc@163.com
  • 基金资助:
    四川省自然科学基金(2024NSFSC0536)

Research progress on cold atmosphere plasma in oral tissue regeneration

Lin Yao1(),Ling Zou1,Xian Liu2()   

  1. 1.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Emergency Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-06-30 Revised:2025-02-21 Online:2025-11-01 Published:2025-10-23
  • Contact: Xian Liu
  • Supported by:
    the Natural Science Foundation of Sichuan Province(2024NSFSC0536)

摘要:

大气冷等离子体(CAP)是一种能在低温和大气压下工作的电离气体,它包含高度活跃的活性氧(ROS)和活性氮(RNS),在细胞信号传导、免疫响应等生理过程中发挥了重要作用。近年来CAP在口腔医学的应用受到广泛关注,其具备优异的抗菌、抗炎和组织修复的能力,有助于口腔内伤口愈合;此外,其表面修饰能力,可增强牙体组织或种植体与周围组织的相容性。因此,CAP在口腔软硬组织的再生方面具有很广阔的应用前景,能够缓解口腔疾病症状、缩短治疗时间和提高治疗效果。本文回顾并综述了近年来CAP在口腔组织再生中研究进展,为其临床应用提供参考。

关键词: 大气冷等离子体, 黏膜组织再生, 骨组织再生, 材料表面改性

Abstract:

Cold atmospheric plasma (CAP) is an ionized gas that works under low temperatures and atmospheric pressure. It contains highly active reactive oxygen species and reactive nitrogen species, which play important roles in cell signaling, immune response, and other physiological processes. The application of CAP in stomatology has received increa-sing attention due to its excellent antibacterial, anti-inflammatory, and tissue-repairing abilities, which contribute to wound healing in the oral cavity. Furthermore, its surface modification ability can enhance the compatibility between dental tissues or implants and surrounding tissues. Therefore, CAP displays broad application prospects in the regeneration of oral soft and hard tissues, alleviation of oral disease symptoms, shortening of treatment course, and improvement of therapeutic effect. This article reviews the research progress on the utilization of CAP in oral tissue regeneration to provide a refe-rence for its clinical application.

Key words: cold atmospheric plasma, mucosal tissue regeneration, bone tissue regeneration, material surface modification

中图分类号: 

  • R78
[1] Sakudo A, Yagyu Y, Onodera T. Disinfection and sterilization using plasma technology: fundamentals and future perspectives for biological applications[J]. Int J Mol Sci, 2019, 20(20): 5216.
[2] Bernhardt T, Semmler ML, Schäfer M, et al. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology[J]. Oxid Med Cell Longev, 2019, 2019: 3873928.
[3] Zarkovic N. Roles and functions of ROS and RNS in cellular physiology and pathology[J]. Cells, 2020, 9(3): 767.
[4] Laroussi M. Cold plasma in medicine and healthcare: the new frontier in low temperature plasma applications[J]. Front Phys, 2020, 8: 74.
[5] Gaharwar AK, Singh I, Khademhosseini A. Engineered biomaterials for in situ tissue regeneration[J]. Nat Rev Mater, 2020, 5(9): 686-705.
[6] Matzkeit N, Schulz L, Schleusser S, et al. Cold atmospheric plasma improves cutaneous microcirculation in standardized acute wounds: results of a controlled, prospective cohort study[J]. Microvasc Res, 2021, 138: 104211.
[7] Moelleken M, Jockenhöfer F, Wiegand C, et al. Pilotstudie zum einfluss von kaltem atmosphärischem plasma auf bakterielle kontamination und heilungstendenz chronischer wunden[J]. J Dtsch Dermatol Ges, 2020, 18(10): 1094-1102.
[8] Zhang JP, Guo L, Chen QL, et al. Effects and me-chanisms of cold atmospheric plasma on skin wound healing of rats[J]. Contrib Plasma Phys, 2019, 59(1): 92-101.
[9] Park J, Lee H, Lee HJ, et al. Non-thermal atmospheric pressure plasma efficiently promotes the proliferation of adipose tissue-derived stem cells by activating NO-response pathways[J]. Sci Rep, 2016, 6: 39298.
[10] Kokai LE, Marra K, Rubin JP. Adipose stem cells: biology and clinical applications for tissue repair and regeneration[J]. Transl Res, 2014, 163(4): 399-408.
[11] Park J, Lee H, Lee HJ, et al. Non-thermal atmospheric pressure plasma is an excellent tool to activate proliferation in various mesoderm-derived human adult stem cells[J]. Free Radic Biol Med, 2019, 134: 374-384.
[12] Kobayashi M, Tomoda K, Morihara H, et al. Non-thermal atmospheric-pressure plasma potentiates mesodermal differentiation of human induced pluripotent stem cells[J]. Heliyon, 2022, 8(12): e12009.
[13] Bhattacharjee B, Bezbaruah R, Rynjah D, et al. Cold atmospheric plasma: a noteworthy approach in medical science[J]. Sciphar, 2023, 2(2): 46-76.
[14] Przekora A, Audemar M, Pawlat J, et al. Positive effect of cold atmospheric nitrogen plasma on the behavior of mesenchymal stem cells cultured on a bone scaffold containing iron oxide-loaded silica nanoparticles catalyst[J]. Int J Mol Sci, 2020, 21(13): 4738.
[15] Wang M, Cheng XQ, Zhu W, et al. Design of biomimetic and bioactive cold plasma-modified nanostructured scaffolds for enhanced osteogenic diffe-rentiation of bone marrow-derived mesenchymal stem cells[J]. Tissue Eng Part A, 2014, 20(5/6): 1060-1071.
[16] Alemi PS, Atyabi SA, Sharifi F, et al. Synergistic effect of pressure cold atmospheric plasma and carboxymethyl chitosan to mesenchymal stem cell differentiation on PCL/CMC nanofibers for cartilage tissue engineering[J]. Polym Adv Technol, 2019, 30(6): 1356-1364.
[17] Preissner S, Poehlmann AC, Schubert A, et al. Ex vivo study comparing three cold atmospheric plasma (CAP) sources for biofilm removal on microstructured titanium[J]. Plasma Med, 2019, 9(1): 1-13.
[18] de Morais Gouvêa Lima G, Carta CFL, Borges AC, et al. Cold atmospheric pressure plasma is effective against P. gingivalis (HW24D-1) mature biofilms and non-genotoxic to oral cells[J]. Appl Sci, 2022, 12(14): 7247.
[19] Lima GMG, Borges AC, Nishime TMC, et al. Cold atmospheric plasma jet as a possible adjuvant therapy for periodontal disease[J]. Molecules, 2021, 26(18): 5590.
[20] Kleineidam B, Nokhbehsaim M, Deschner J, et al. Effect of cold plasma on periodontal wound healing-an in vitro study[J]. Clin Oral Investig, 2019, 23(4): 1941-1950.
[21] Eggers B, Stope MB, Marciniak J, et al. Modulation of inflammatory responses by a non-invasive physical plasma jet during gingival wound healing[J]. Cells, 2022, 11(17): 2740.
[22] Kusakcı-Seker B, Ozdemir H, Karadeniz-Saygili S. Evaluation of the protective effects of non-thermal atmospheric plasma on alveolar bone loss in experimental periodontitis[J]. Clin Oral Investig, 2021, 25(12): 6949-6959.
[23] Choi BB, Choi JH, Kang TH, et al. Enhancement of osteoblast differentiation using No-ozone cold plasma on human periodontal ligament cells[J]. Biome-dicines, 2021, 9(11): 1542.
[24] Eggers B, Marciniak J, Deschner J, et al. Cold atmospheric plasma promotes regeneration-associated cell functions of murine cementoblasts in vitro [J]. Int J Mol Sci, 2021, 22(10): 5280.
[25] Li Y, Liu YJ, Wang SB, et al. Non-thermal bio-compatible plasma induces osteogenic differentiation of human mesenchymal stem/stromal cells with ROS-induced activation of MAPK[J]. IEEE Access, 2020, 8: 36652-36663.
[26] Özdemir H, Seker B, Saygili S. Preventive effect of atmospheric cold plasma on alveolar bone loss in experimental periodontitis in rats[J]. Clin Oral Implants Res, 2019, 30(S19): 212.
[27] Liu ZX, Du XJ, Xu LY, et al. The therapeutic perspective of cold atmospheric plasma in periodontal disease[J]. Oral Dis, 2024, 30(3): 938-948.
[28] Zhang YX, Xiong Y, Xie P, et al. Non-thermal plasma reduces periodontitis-induced alveolar bone loss in rats[J]. Biochem Biophys Res Commun, 2018, 503(3): 2040-2046.
[29] Küçük D, Savran L, Ercan UK, et al. Evaluation of efficacy of non-thermal atmospheric pressure plasma in treatment of periodontitis: a randomized controlled clinical trial[J]. Clin Oral Investig, 2020, 24(9): 3133-3145.
[30] 宋应亮, 张思佳. 对种植体周围炎的认识与预防[J]. 华西口腔医学杂志, 2020, 38(5): 479-483.
Song YL, Zhang SJ. Insights into peri-implantitis and its prevention[J]. West China J Stomatol, 2020, 38(5): 479-483.
[31] Yang Y, Zheng M, Yang Y, et al. Inhibition of bacterial growth on zirconia abutment with a helium cold atmospheric plasma jet treatment[J]. Clin Oral Investig, 2020, 24(4): 1465-1477.
[32] Alqutaibi AY, Aljohani A, Alduri A, et al. The effectiveness of cold atmospheric plasma (CAP) on bacterial reduction in dental implants: a systematic review[J]. Biomolecules, 2023, 13(10): 1528.
[33] Carreiro AFP, Delben JA, Guedes S, et al. Low-temperature plasma on peri-implant-related biofilm and gingival tissue[J]. J Periodontol, 2019, 90(5): 507-515.
[34] Matthes R, Jablonowski L, Holtfreter B, et al. Fibroblast growth on zirconia ceramic and titanium disks after application with cold atmospheric pressure plasma devices or with antiseptics[J]. Int J Oral Maxillofac Implants, 2019, 34(4): 809-818.
[35] Wagner G, Eggers B, Duddeck D, et al. Influence of cold atmospheric plasma on dental implant mate-rials-an in vitro analysis[J]. Clin Oral Investig, 2022, 26(3): 2949-2963.
[36] Zheng Z, Ao XG, Xie P, et al. Nonthermal plasma brush treatment on titanium and zirconia to improve periabutment epithelium formation[J]. ACS Biomater Sci Eng, 2021, 7(11): 5039-5047.
[37] Canullo L, Rakic M, Corvino E, et al. Effect of argon plasma pre-treatment of healing abutments on peri-implant microbiome and soft tissue integration: a proof-of-concept randomized study[J]. BMC Oral Health, 2023, 23(1): 27.
[38] Zheng Z, He YJ, Long L, et al. Involvement of PI3K/Akt signaling pathway in promoting osteoge-nesis on titanium implant surfaces modified with no-vel non-thermal atmospheric plasma[J]. Front Bioeng Biotechnol, 2022, 10: 975840.
[39] Jang MH, Park YB, Kwon JS, et al. Osseointegration of plasma jet treated titanium implant surface in an animal model[J]. Materials, 2021, 14(8): 1942.
[40] Long L, Zhang M, Gan SQ, et al. Comparison of early osseointegration of non-thermal atmospheric plasma-functionalized/SLActive titanium implant surfaces in beagle dogs[J]. Front Bioeng Biotechnol, 2022, 10: 965248.
[41] Liu JR, Xu GM, Shi XM, et al. Low temperature plasma promoting fibroblast proliferation by activa-ting the NF-κB pathway and increasing cyclinD1 expression[J]. Sci Rep, 2017, 7(1): 11698.
[42] Eggers B, Stope MB, Marciniak J, et al. Non-invasive physical plasma generated by a medical argon plasma device induces the expression of regenerative factors in human gingival keratinocytes, fibroblasts, and tissue biopsies[J]. Biomedicines, 2022, 10(4): 889.
[43] Pekbağrıyanık T, Dadas FK, Enhoş Ş. Effects of non-thermal atmospheric pressure plasma on palatal wound healing of free gingival grafts: a randomized controlled clinical trial[J]. Clin Oral Investig, 2021, 25(11): 6269-6278.
[44] Ibáñez-Mancera NG, López-Callejas R, Toral-Rizo VH, et al. Cold atmospheric plasma benefits after a biopsy of the gingiva and palate: a case series[J]. Plasma Med, 2022, 12(4): 1-9.
[45] Kusakci-Seker B, Demirayak-Akdemir M. The effect of non-thermal atmospheric pressure plasma application on wound healing after gingivectomy[J]. Int Wound J, 2020, 17(5): 1376-1383.
[46] Ibáñez-Mancera NG, López-Callejas R, Toral-Rizo VH, et al. Healing of recurrent aphthous stomatitis by non-thermal plasma: pilot study[J]. Biomedicines, 2023, 11(1): 167.
[47] Haghighi L, Azizi A, Vatanpour M, et al. Antibacterial efficacy of cold atmospheric plasma, photodynamic therapy with two photosensitizers, and diode laser on primary mandibular second molar root canals infected with Enterococcus faecalis: an in vitro study[J]. Int J Dent, 2023, 2023: 5514829.
[48] Arguello-Sánchez R, López-Callejas R, Rodríguez-Méndez BG, et al. Innovative curved-tip reactor for non-thermal plasma and plasma-treated water gene-ration: synergistic impact comparison with sodium hypochlorite in dental root canal disinfection[J]. Materials, 2023, 16(22): 7204.
[49] Strazzi-Sahyon HB, Suzuki TYU, Lima GQ, et al. In vitro study on how cold plasma affects dentin surface characteristics[J]. J Mech Behav Biomed Mater, 2021, 123: 104762.
[50] Mousavi SFP, Ganjovi A, Eskandarizadeh A, et al. Effects of nonthermal atmospheric pressure plasma jet on human dental pulp stem cells[J]. Plasma Med, 2021, 11(3): 41-58.
[51] 毛学理, 施松涛. 牙髓干细胞与牙髓再生[J]. 中华口腔医学研究杂志(电子版), 2022, 16(6): 333-342.
Mao XL, Shi ST. Dental pulp stem cells and pulp regeneration[J]. Chin J Stomatol Res Electron Ed, 2022, 16(6): 333-342.
[52] Yoo YJ, Kang MJ, Perinpanayagam H, et al. Non-thermal atmospheric pressure plasma-conditioned root dentin promotes attraction and attachment of primary human dental pulp stem cells in real-time ex vivo [J]. Appl Sci, 2021, 11(15): 6836.
[53] Sonoda S, Mei YF, Atsuta I, et al. Exogenous nitric oxide stimulates the odontogenic differentiation of rat dental pulp stem cells[J]. Sci Rep, 2018, 8(1): 3419.
[54] Tominami K, Kanetaka H, Sasaki S, et al. Cold atmospheric plasma enhances osteoblast differentiation[J]. PLoS One, 2017, 12(7): e0180507.
[55] Eggers B, Marciniak J, Memmert S, et al. The beneficial effect of cold atmospheric plasma on parameters of molecules and cell function involved in wound healing in human osteoblast-like cells in vitro [J]. Odontology, 2020, 108(4): 607-616.
[56] Hartwig S, Preissner S, Voss JO, et al. The feasibility of cold atmospheric plasma in the treatment of complicated wounds in cranio-maxillo-facial surgery[J]. J Craniomaxillofac Surg, 2017, 45(10): 1724-1730.
[57] Rutkowski R, Daeschlein G, von Woedtke T, et al. Long-term risk assessment for medical application of cold atmospheric pressure plasma[J]. Diagnostics (Basel), 2020, 10(4): 210.
[1] 徐彦雪,付丽. 功能等级引导骨再生膜的研究进展[J]. 国际口腔医学杂志, 2023, 50(3): 353-358.
[2] 马凯,李昊,赵红梅,王永亮,刘杰,柏娜. 低温氩氧等离子体处理的无机牛骨对MC3T3-E1细胞黏附、增殖及分化的影响[J]. 国际口腔医学杂志, 2020, 47(3): 278-285.
[3] 杨立明 陈淑萍 李小菊 谢春 武斌. Bio-oss应用于种植牙唇侧骨缺损的锥形束CT研究[J]. 国际口腔医学杂志, 2015, 42(4): 420-422.
[4] 章臻 潘巨利. 骨膜在骨组织再生中的作用[J]. 国际口腔医学杂志, 2014, 41(3): 351-354.
[5] 雷文龙1 施斌1,2. 血小板衍生生长因子-BB在口腔种植领域中的作用[J]. 国际口腔医学杂志, 2014, 41(2): 199-203.
[6] 王桂芳 蒋欣泉. 尼尔样-1型分子在促进骨组织再生中的作用[J]. 国际口腔医学杂志, 2013, 40(6): 778-781.
[7] 张晓丹 胡丹青综述 平飞云审校. 牵张成骨和引导骨再生术在垂直骨增量上的比较研究[J]. 国际口腔医学杂志, 2012, 39(2): 190-193.
[8] 顾晔,汪永跃. 引导骨组织再生膜应用于自身骨移植的研究现状[J]. 国际口腔医学杂志, 2008, 35(S1): -.
[9] 桂和明,杜丽娟,黄洁英,. 拜阿蒙骨诱导人工骨治疗重度牙周炎的临床疗效[J]. 国际口腔医学杂志, 2007, 34(02): 149-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!