 
 国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (6): 806-815.doi: 10.7518/gjkq.2025097
        
               		冯涵果1,2,3( ),饶南荃1,2,3,曾馨仪1,2,3,余思源1,2,3,刘娟1,2,3(
),饶南荃1,2,3,曾馨仪1,2,3,余思源1,2,3,刘娟1,2,3( )
)
                  
        
        
        
        
    
        
               		Hanguo Feng1,2,3( ),Nanquan Rao1,2,3,Xinyi Zeng1,2,3,Siyuan Yu1,2,3,Juan Liu1,2,3(
),Nanquan Rao1,2,3,Xinyi Zeng1,2,3,Siyuan Yu1,2,3,Juan Liu1,2,3( )
)
			  
			
			
			
                
        
    
摘要:
口腔是消化道的起点。患有全身系统性疾病的个体肠道中,口腔来源的细菌水平增加。口腔微生物可以通过多种途径作用于肠道,导致肠道微生物失调和胃肠黏膜损伤等。与成人相比,儿童的口腔和肠道微生物随自身生长发育而不断发展,对外界刺激更加敏感。儿童期是微生物干预的重要时期。本文对口腔、肠道微生物的建立和发展,以及两者在儿童全身系统性疾病中的作用关系进行综述,为疾病的预防、诊断和治疗提供新的思路。
中图分类号:
| [1] | Ronan V, Yeasin R, Claud EC. Childhood development and the microbiome-the intestinal microbiota in maintenance of health and development of di-sease during childhood development[J]. Gastroente-rology, 2021, 160(2): 495-506. | 
| [2] | 程兴群, 徐欣, 周学东. 口腔微生物与肠道微生物的关系[J]. 华西口腔医学杂志, 2017, 35(3): 322-327. | 
| Cheng XQ, Xu X, Zhou XD. Relationship between oral and gut microbes[J]. West China J Stomatol, 2017, 35(3): 322-327. | |
| [3] | Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4): 837-848. | 
| [4] | Xiao J, Fiscella KA, Gill SR. Oral microbiome: possible harbinger for children’s health[J]. Int J Oral Sci, 2020, 12(1): 12. | 
| [5] | Xu J, Zhang Y, Fang XH, et al. The oral bacterial microbiota facilitates the stratification for ulcerative colitis patients with oral ulcers[J]. Ann Clin Microbiol Antimicrob, 2023, 22(1): 99. | 
| [6] | Abdelbary MMH, Hatting M, Bott A, et al. The oral-gut axis: salivary and fecal microbiome dysbiosis in patients with inflammatory bowel disease[J]. Front Cell Infect Microbiol, 2022, 12: 1010853. | 
| [7] | Kong XJ, Liu J, Cetinbas M, et al. New and preliminary evidence on altered oral and gut microbiota in individuals with autism spectrum disorder (ASD): implications for ASD diagnosis and subtyping based on microbial biomarkers[J]. Nutrients, 2019, 11(9): 2128. | 
| [8] | Kitamoto S, Nagao-Kitamoto H, Jiao YZ, et al. The intermucosal connection between the mouth and gut in commensal pathobiont-driven colitis[J]. Cell, 2020, 182(2): 447-462.e14. | 
| [9] | Kato T, Yamazaki K, Nakajima M, et al. Oral admini-stration of Porphyromonas gingivalis alters the gut microbiome and serum metabolome[J]. mSphere, 2018, 3(5): e00460-e00418. | 
| [10] | Wang AL, Zhai ZH, Ding YY, et al. The oral-gut microbiome axis in inflammatory bowel disease: from inside to insight[J]. Front Immunol, 2024, 15: 1430001. | 
| [11] | Wang W, Yan YQ, Yu FR, et al. Role of oral and gut microbiota in childhood obesity[J]. Folia Microbiol, 2023, 68(2): 197-206. | 
| [12] | Wang LM, Gong C, Wang RY, et al. A pilot study on the characterization and correlation of oropharyngeal and intestinal microbiota in children with type 1 diabetes mellitus[J]. Front Pediatr, 2024, 12: 1382466. | 
| [13] | Esposito MV, Nardelli C, Granata I, et al. Setup of quantitative PCR for oral Neisseria spp. evaluation in celiac disease diagnosis[J]. Diagnostics (Basel), 2019, 10(1): 12. | 
| [14] | Chen B, Wang JW, Wang Y, et al. Oral microbiota dysbiosis and its association with Henoch-Schönlein Purpura in children[J]. Int Immunopharmacol, 2018, 65: 295-302. | 
| [15] | Frid P, Baraniya D, Halbig J, et al. Salivary oral microbiome of children with juvenile idiopathic arthritis: a Norwegian cross-sectional study[J]. Front Cell Infect Microbiol, 2020, 10: 602239. | 
| [16] | Zhu WX, Wu YL, Liu H, et al. Gut-lung axis: microbial crosstalk in pediatric respiratory tract infections[J]. Front Immunol, 2021, 12: 741233. | 
| [17] | Martin R, Makino H, Cetinyurek Yavuz A, et al. Early-life events, including mode of delivery and type of feeding, siblings and gender, shape the develo-ping gut microbiota[J]. PLoS One, 2016, 11(6): e0158498. | 
| [18] | Craig SJC, Blankenberg D, Parodi ACL, et al. Child weight gain trajectories linked to oral microbiota composition[J]. Sci Rep, 2018, 8(1): 14030. | 
| [19] | Bäckhed F, Roswall J, Peng YQ, et al. Dynamics and stabilization of the human gut microbiome du-ring the first year of life[J]. Cell Host Microbe, 2015, 17(6): 852. | 
| [20] | Oba PM, Holscher HD, Mathai RA, et al. Diet influen-ces the oral microbiota of infants during the first six months of life[J]. Nutrients, 2020, 12(11): 3400. | 
| [21] | Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486(7402): 222-227. | 
| [22] | Mason MR, Chambers S, Dabdoub SM, et al. Cha-racterizing oral microbial communities across dentition states and colonization niches[J]. Microbiome, 2018, 6(1): 67. | 
| [23] | Suárez-Martínez C, Santaella-Pascual M, Yagüe-Guirao G, et al. Infant gut microbiota colonization: influence of prenatal and postnatal factors, focusing on diet[J]. Front Microbiol, 2023, 14: 1236254. | 
| [24] | Hampl SE, Hassink SG, Skinner AC, et al. Clinical practice guideline for the evaluation and treatment of children and adolescents with obesity[J]. Pedia-trics, 2023, 151(2): e2022060640. | 
| [25] | Ma T, Wu ZY, Lin J, et al. Characterization of the oral and gut microbiome in children with obesity aged 3 to 5 years[J]. Front Cell Infect Microbiol, 2025, 13: 1102650. | 
| [26] | Mameli C, Cattaneo C, Panelli S, et al. Taste perception and oral microbiota are associated with obesity in children and adolescents[J]. PLoS One, 2019, 14(9): e0221656. | 
| [27] | Mervish NA, Hu JZ, Hagan LA, et al. Associations of the oral microbiota with obesity and menarche in inner city girls[J]. J Child Obes, 2019, 4(1): 2. | 
| [28] | Li XM, Lv Q, Chen YJ, et al. Association between childhood obesity and gut microbiota: 16S rRNA gene sequencing-based cohort study[J]. World J Gastroenterol, 2024, 30(16): 2249-2257. | 
| [29] | Wei YH, Liang JJ, Su YX, et al. The associations of the gut microbiome composition and short-chain fatty acid concentrations with body fat distribution in children[J]. Clin Nutr, 2021, 40(5): 3379-3390. | 
| [30] | CMDSP Indiani, Rizzardi KF, Castelo PM, et al. Childhood obesity and firmicutes/bacteroidetes ratio in the gut microbiota: a systematic review[J]. Child Obes, 2018, 14(8): 501-509. | 
| [31] | Teyani R, Moniri NH. Gut feelings in the islets: the role of the gut microbiome and the FFA2 and FFA3 receptors for short chain fatty acids on β-cell function and metabolic regulation[J]. Br J Pharmacol, 2023, 180(24): 3113-3129. | 
| [32] | Grahnemo L, Nethander M, Coward E, et al. Cross-sectional associations between the gut microbe Ruminococcus gnavus and features of the metabolic syndrome[J]. Lancet Diabetes Endocrinol, 2022, 10(7): 481-483. | 
| [33] | Stefura T, Zapała B, Gosiewski T, et al. Differences in compositions of oral and fecal microbiota between patients with obesity and controls[J]. Medicina, 2021, 57(7): 678. | 
| [34] | Quattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes[J]. Lancet (London, England), 2023, 401(10394): 2149-2162. | 
| [35] | de Groot PF, Belzer C, Aydin Ö, et al. Distinct fecal and oral microbiota composition in human type 1 dia-betes, an observational study[J]. PLoS One, 2017, 12(12): e0188475. | 
| [36] | Yuan XX, Wu J, Chen RM, et al. Characterization of the oral microbiome of children with type 1 diabetes in the acute and chronic phases[J]. J Oral Microbiol, 2022, 14(1): 2094048. | 
| [37] | Ho J, Nicolucci AC, Virtanen H, et al. Effect of prebiotic on microbiota, intestinal permeability, and glycemic control in children with type 1 diabetes[J]. J Clin Endocrinol Metab, 2019, 104(10): 4427-4440. | 
| [38] | Yuan XX, Wang RR, Han B, et al. Functional and metabolic alterations of gut microbiota in children with new-onset type 1 diabetes[J]. Nat Commun, 2022, 13(1): 6356. | 
| [39] | Kunath BJ, Hickl O, Queirós P, et al. Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integratedmulti-omic analyses[J]. Microbiome, 2022, 10(1): 243. | 
| [40] | Takahashi N, Saito K, Schachtele CF, et al. Acid to-lerance and acid-neutralizing activity of Porphyromonas gingivalis, Prevotella intermedia and Fusobacterium nucleatum [J]. Oral Microbiol Immunol, 1997, 12(6): 323-328. | 
| [41] | Kaci G, Goudercourt D, Dennin V, et al. Anti-inflammatory properties of Streptococcus salivarius, a commensal bacterium of the oral cavity and digestive tract[J]. Appl Environ Microbiol, 2014, 80(3): 928-934. | 
| [42] | Biassoni R, di Marco E, Squillario M, et al. Gut microbiota in T1DM-onset pediatric patients: machine-learning algorithms to classify microorganisms as disease linked[J]. J Clin Endocrinol Metab, 2020, 105(9): dgaa407. | 
| [43] | Rosell-Mases E, Santiago A, Corral-Pujol M, et al. Mutual modulation of gut microbiota and the immune system in type 1 diabetes models[J]. Nat Commun, 2023, 14(1): 7770. | 
| [44] | Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease[J]. Nature, 2012, 491(7422): 119-124. | 
| [45] | Monleón-Getino A, Pujol-Muncunill G, Méndez Viera J, et al. A pilot study of the use of the oral and faecal microbiota for the diagnosis of ulcerative colitis and Crohn’s disease in a paediatric population[J]. Front Pediatr, 2023, 11: 1220976. | 
| [46] | Elmaghrawy K, Fleming P, Fitzgerald K, et al. The oral microbiome in treatment-Naïve paediatric IBD patients exhibits dysbiosis related to disease severity that resolves following therapy[J]. J Crohns Colitis, 2023, 17(4): 553-564. | 
| [47] | Shaw KA, Bertha M, Hofmekler T, et al. Dysbiosis, inflammation, and response to treatment: a longitudinal study of pediatric subjects with newly diagnosed inflammatory bowel disease[J]. Genome Med, 2016, 8(1): 75. | 
| [48] | Schirmer M, Denson L, Vlamakis H, et al. Compositional and temporal changes in the gut microbiome of pediatric ulcerative colitis patients are linked to disease course[J]. Cell Host Microbe, 2018, 24(4): 600-610.e4. | 
| [49] | 张浩楠, 周学东, 徐欣, 等. 口腔微生物与炎症性肠病的关系[J]. 华西口腔医学杂志, 2019, 37(4): 443-449. | 
| Zhang HN, Zhou XD, Xu X, et al. Oral microbiota and inflammatory bowel disease[J]. West China J Stomatol, 2019, 37(4): 443-449. | |
| [50] | Atarashi K, Suda W, Luo CW, et al. Ectopic colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation[J]. Science, 2017, 358(6361): 359-365. | 
| [51] | Lebwohl B, Rubio-Tapia A. Epidemiology, presentation, and diagnosis of celiac disease[J]. Gastroentero-logy, 2021, 160(1): 63-75. | 
| [52] | Sahin Y. Celiac disease in children: a review of the literature[J]. World J Clin Pediatr, 2021, 10(4): 53-71. | 
| [53] | Francavilla R, Ercolini D, Piccolo M, et al. Salivary microbiota and metabolome associated with celiac disease[J]. Appl Environ Microbiol, 2014, 80(11): 3416-3425. | 
| [54] | Ercolini D, Francavilla R, Vannini L, et al. From an imbalance to a new imbalance: Italian-style gluten-free diet alters the salivary microbiota and metabolome of African celiac children[J]. Sci Rep, 2015, 5: 18571. | 
| [55] | Leonard MM, Karathia H, Pujolassos M, et al. Multi-omics analysis reveals the influence of gene-tic and environmental risk factors on developing gut microbiota in infants at risk of celiac disease[J]. Microbiome, 2020, 8(1): 130. | 
| [56] | Girdhar K, Dogru YD, Huang Q, et al. Dynamics of the gut microbiome, IgA response, and plasma metabolome in the development of pediatric celiac di-sease[J]. Microbiome, 2023, 11(1): 9. | 
| [57] | Iaffaldano L, Granata I, Pagliuca C, et al. Oropharyngeal microbiome evaluation highlights Neisseria abundance in active celiac patients[J]. Sci Rep, 2018, 8(1): 11047. | 
| [58] | D’Argenio V, Casaburi G, Precone V, et al. Metagenomics reveals dysbiosis and a potentially pathoge-nic N. flavescens strain in duodenum of adult celiac patients[J]. Am J Gastroenterol, 2016, 111(6): 879-890. | 
| [59] | Laparra JM, Olivares M, Gallina O, et al. Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model[J]. PLoS One, 2012, 7(2): e30744. | 
| [60] | Fernandez-Feo M, Wei G, Blumenkranz G, et al. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac di-sease and gluten sensitivity[J]. Clin Microbiol Infect, 2013, 19(9): E386-E394. | 
| [61] | Zeidan J, Fombonne E, Scorah J, et al. Global prevalence of autism: a systematic review update[J]. Autism Res, 2022, 15(5): 778-790. | 
| [62] | Al-Beltagi M. Autism medical comorbidities[J]. World J Clin Pediatr, 2021, 10(3): 15-28. | 
| [63] | Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, et al. A comprehensive review on the role of the gut microbiome in human neurological disorders[J]. Clin Microbiol Rev, 2022, 35(1): e0033820. | 
| [64] | Manghi P, Filosi M, Zolfo M, et al. Large-scale metagenomic analysis of oral microbiomes reveals markers for autism spectrum disorders[J]. Nat Commun, 2024, 15(1): 9743. | 
| [65] | Qiao YN, Wu MT, Feng Y, et al. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls[J]. Sci Rep, 2018, 8(1): 1597. | 
| [66] | Jones J, Reinke SN, Mousavi-Derazmahalleh M, et al. Changes to the gut microbiome in young children showing early behavioral signs of autism[J]. Front Microbiol, 2022, 13: 905901. | 
| [67] | Dan Z, Mao XH, Liu QS, et al. Altered gut micro-bial profile is associated with abnormal metabolism activity of Autism Spectrum Disorder[J]. Gut Microbes, 2020, 11(5): 1246-1267. | 
| [68] | Bowland GB, Weyrich LS. The oral-microbiome-brain axis and neuropsychiatric disorders: an anthropological perspective[J]. Front Psychiatry, 2022, 13: 810008. | 
| [69] | Anand S, Kaur H, Mande SS. Comparative in silico analysis of butyrate production pathways in gut commensals and pathogens[J]. Front Microbiol, 2016, 7: 1945. | 
| [70] | Alharthi A, Alhazmi S, Alburae N, et al. The human gut microbiome as a potential factor in autism spectrum disorder[J]. Int J Mol Sci, 2022, 23(3): 1363. | 
| [71] | Dong JJ, Li W, Wang Q, et al. Relationships between oral microecosystem and respiratory diseases[J]. Front Mol Biosci, 2021, 8: 718222. | 
| [72] | Heijink IH, Kuchibhotla VNS, Roffel MP, et al. Epithelial cell dysfunction, a major driver of asthma development[J]. Allergy, 2020, 75(8): 1902-1917. | 
| [73] | Olszak T, An DD, Zeissig S, et al. Microbial exposure during early life has persistent effects on natural killer T cell function[J]. Science, 2012, 336(6080): 489-493. | 
| [1] | 赵南洋,吴娟娟,周洲,陈欣月,张旭彤,徐逸飞,戴泰鸣. 贵州省实施儿童口腔疾病综合干预项目地区与非干预地区12岁儿童口腔健康状况调查分析[J]. 国际口腔医学杂志, 2025, 52(4): 484-489. | 
| [2] | 邓含知,赵蕾. 孕妇口腔微生物影响新生儿口腔及全身健康的研究进展[J]. 国际口腔医学杂志, 2025, 52(4): 552-558. | 
| [3] | 韩峰,朱凤节,高黎. 儿童继发龋的危险因素及防治策略分析[J]. 国际口腔医学杂志, 2025, 52(1): 76-81. | 
| [4] | 冯国琴,李亚迅,史晓彤,刘佳佳,刘君瑜,王翔宇. 婴幼儿喂养方式与低龄儿童龋相关性的研究进展[J]. 国际口腔医学杂志, 2025, 52(1): 92-98. | 
| [5] | 蒋思鑫,施雯锦,罗小波,陈谦明. 儿童病毒性口炎诊断及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 519-531. | 
| [6] | 吴礼安. 部分断冠粘接术在儿童恒前牙复杂冠根折中的初步应用[J]. 国际口腔医学杂志, 2023, 50(6): 623-631. | 
| [7] | 高若凡,夏斌. 基于慢性疾病管理理念的重度低龄儿童龋管理方法[J]. 国际口腔医学杂志, 2023, 50(3): 341-346. | 
| [8] | 陈艺菲,张滨婧,冯淑琦,徐锐,杨淑娴,李雨庆. 黄酮类化合物对口腔微生物的影响及其机制[J]. 国际口腔医学杂志, 2023, 50(2): 210-216. | 
| [9] | 任海霞,刘颍凤,梁慧敏,李家勇,温春琴,王春梅. 虚拟现实技术在儿童深龋治疗中对牙科畏惧的干预效果研究[J]. 国际口腔医学杂志, 2022, 49(5): 529-536. | 
| [10] | 贺红. 伴扁桃体肥大Ⅲ类错𬌗畸形儿童早期矫治的临床诊疗策略[J]. 国际口腔医学杂志, 2022, 49(3): 249-254. | 
| [11] | 朱锦怡,樊琪,周媛,邹静,黄睿洁. 唾液蛋白作为低龄儿童龋预测标志物的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 212-219. | 
| [12] | 范宇,程磊. 吸烟影响口腔微环境及其在龋病进展中的作用[J]. 国际口腔医学杂志, 2021, 48(5): 609-613. | 
| [13] | 李诗佳,陈秋宇,邹静,黄睿洁. 尼古丁对口腔细菌单独或混合培养时菌群数目调控的研究[J]. 国际口腔医学杂志, 2021, 48(3): 305-311. | 
| [14] | 邓晓宇,张蕴涵,邹静. 低龄儿童龋的早期生物学管理[J]. 国际口腔医学杂志, 2020, 47(5): 581-588. | 
| [15] | 邓晓宇,仁青色格,霍媛媛,崔晨,亓文婷,韩轩,黄睿洁,周媛,朱林,邹静,旦增念扎. 西藏自治区城区和牧区儿童患龋情况与相关因素分析[J]. 国际口腔医学杂志, 2020, 47(4): 383-390. | 
| 
 | ||