国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (4): 450-455.doi: 10.7518/gjkq.2024060

• 材料学专栏 • 上一篇    

口腔半透明氧化锆陶瓷粘接效果的影响因素

姚雪敏(),王华,王璐,赵彬()   

  1. 山西医科大学口腔医学院·口腔医院修复科 口腔疾病防治与新材料山西省重点实验室 太原 030001
  • 收稿日期:2023-11-26 修回日期:2024-03-25 出版日期:2024-07-01 发布日期:2024-06-24
  • 通讯作者: 赵彬
  • 作者简介:姚雪敏,硕士,Email:yxm19982021@163.com
  • 基金资助:
    山西省医学重点科研项目重大科技攻关专项(2022XM-14);山西省重点研发计划(202202130501009)

Factors influencing the bonding effect of oral translucent zirconia ceramics

Xuemin Yao(),Hua Wang,Lu Wang,Bin Zhao()   

  1. Dept. of Prosthodontics, Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, China
  • Received:2023-11-26 Revised:2024-03-25 Online:2024-07-01 Published:2024-06-24
  • Contact: Bin Zhao
  • Supported by:
    Major Technologies R & D Special Projects of Shanxi Province Key Scientific Reseurch Program(2022XM14);Key Research and Development Program of Shanxi Province(202202130501009)

摘要:

半透明氧化锆作为新一代的氧化锆全瓷材料,具有良好的力学和光学性能,常应用于前牙美学区修复。要获得良好的远期修复效果,关键在于尽可能提高该材料的粘接强度,因此明确半透明氧化锆陶瓷材料粘接效果的影响因素非常重要。在实际应用中,半透明氧化锆的粘接效果会受到多种因素的影响,本文主要就半透明氧化锆陶瓷的组成与结构、表面处理方法、表面改性方法,粘接性单体与底涂剂等影响因素的研究进展作一综述,为其临床应用提供参考。

关键词: 半透明氧化锆, 粘接, 表面处理, 粘接性单体

Abstract:

As a new generation of zirconia all-ceramic materials, translucent zirconia ceramics are often used to restore the anterior tooth aesthetic zone because of their good mechanical and optical properties. To achieve a good long-term repair effect, the key is to improve the bonding strength of the material as much as possible. Therefore, clinicians need to clarify the factors influencing the bonding properties of translucent zirconia ceramic materials. In practical applications, the bonding properties of translucent zirconia are affected by many factors. This paper primarily reviews the progress of research on the composition and structure, surface-treatment methods, surface-modification methods, adhesive monomers, and primer of translucent zirconia ceramics. The results can serve as a reference for clinical application.

Key words: translucent zirconia, bonding, surface treatment, adhesive monomers

中图分类号: 

  • R783
1 Sulaiman TA, Suliman AA, Abdulmajeed AA, et al. Zirconia restoration types, properties, tooth preparation design, and bonding. A narrative review[J]. J Esthet Restor Dent, 2024, 36(1): 78-84.
2 Souza R, Barbosa F, Araújo G, et al. Ultrathin monolithic zirconia veneers: reality or future? Report of a clinical case and one-year follow-up[J]. Oper Dent, 2018, 43(1): 3-11.
3 Zhang CN, Zhu Y, Zhang YJ, et al. Clinical esthetic comparison between monolithic high-translucency multilayer zirconia and traditional veneered zirconia for single implant restoration in maxillary esthetic areas: prosthetic and patient-centered outcomes[J]. J Dent Sci, 2022, 17(3): 1151-1159.
4 黎敏, 华成舸, 蒋丽. 提高氧化锆陶瓷粘接性能新技术的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 485-490.
Li M, Hua CG, Jiang L. Research progress on new technology for improving adhesion properties of zirconia ceramics[J]. Int J Stomatol, 2021, 48(4): 485-490.
5 Alqutaibi AY, Ghulam O, Krsoum M, et al. Revolution of current dental zirconia: a comprehensive review[J]. Molecules, 2022, 27(5): 1699.
6 Dongre P, Kavar D. Translucent zirconia-a step towards esthetics-a narrative review[J]. Int J Curr Sci Res Rev, 2023, 6(3): 2084-2091.
7 Kwon SJ, Lawson NC, McLaren EE, et al. Comparison of the mechanical properties of translucent zirconia and lithium disilicate[J]. J Prosthet Dent, 2018, 120(1): 132-137.
8 Alammar A, Blatz MB. The resin bond to high-translucent zirconia-a systematic review[J]. J Esthet Restor Dent, 2022, 34(1): 117-135.
9 Oğuz Eİ, Özgür ME, Sungur S, et al. Impact of multiple firings and resin cement type on shear bond strength between zirconia and resin cements[J]. J Adv Prosthodont, 2020, 12(4): 197-203.
10 高士军, 裴鹏飞, 卢薇, 等. 饰瓷温度烧结对氧化锆陶瓷与树脂黏结剂剪切强度的影响[J]. 中国组织工程研究, 2013, 17(51): 8809-8814.
Gao SJ, Pei PF, Lu W, et al. Decorative porcelain temperature firing affects the shear bond strength between zirconia ceramics and resin binder[J]. Chin J Tissue Eng Res, 2013, 17(51): 8809-8814.
11 Grangeiro M, Demachkia AM, Rodrigues CS, et al. Effect of multiple firings on the microshear bond strength between a translucent zirconia and a resin cement[J]. Oper Dent, 2023, 48(3): 329-336.
12 Quigley NP, Loo DSS, Choy C, et al. Clinical efficacy of methods for bonding to zirconia: a systematic review[J]. J Prosthet Dent, 2021, 125(2): 231-240.
13 Xiong YH, Zhao P, Jin CX, et al. Effect of airborne-particle abrasion protocols and MDP-based primer on the bond strength of highly translucent zirconia[J]. J Adhes Dent, 2021, 23(5): 437-446.
14 Zhang XY, Liang W, Jiang F, et al. Effects of air-abrasion pressure on mechanical and bonding pro-perties of translucent zirconia[J]. Clin Oral Investig, 2021, 25(4): 1979-1988.
15 McLaren EA, Maharishi A, White SN. Influence of yttria content and surface treatment on the strength of translucent zirconia materials[J]. J Prosthet Dent, 2023, 129(4): 638-643.
16 Aung SSMP, Takagaki T, Lyann SK, et al. Effects of alumina-blasting pressure on the bonding to super/ultra-translucent zirconia[J]. Dent Mater, 2019, 35(5): 730-739.
17 AlMutairi R, AlNahedh H, Maawadh A, et al. Effects of different air particle abrasion protocols on the biaxial flexural strength and fractography of high/ultra-translucent zirconia[J]. Materials, 2021, 15(1): 244.
18 El Gamal A, Medioni E, Rocca JP, et al. Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces[J]. Lasers Med Sci, 2017, 32(4): 779-785.
19 Tzanakakis EG, Dimitriadi M, Tzoutzas I, et al. Effect of water storage on hardness and interfacial strength of resin composite luting agents bonded to surface-treated monolithic zirconia[J]. Dent J, 2021, 9(7): 78.
20 Akpinar YZ, Yavuz T, Aslan MA, et al. Effect of different surface shapes formed by femtosecond laser on zirconia-resin cement shear bond strength[J]. J Adhes Sci Technol, 2015, 29(3): 149-157.
21 Tzanakakis EC, Beketova A, Papadopoulou L, et al. Novel femto laser patterning of high translucent zirconia as an alternative to conventional particle abrasion[J]. Dent J, 2021, 9(2): 20.
22 Abu Ruja M, de Souza GM, Finer Y. Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement[J]. Dent Mater, 2019, 35(11): 1545-1556.
23 Amaral R, Ozcan M, Valandro LF, et al. Effect of conditioning methods on the microtensile bond strength of phosphate monomer-based cement on zirconia ceramic in dry and aged conditions[J]. J Biomed Mater Res B Appl Biomater, 2008, 85(1): 1-9.
24 Sousa RS, Campos F, Sarmento HR, et al. Surface roughness and bond strength between Y-TZP and self-adhesive resin cement after air particle abrasion protocols[J]. Gen Dent, 2016, 64(5): 50-55.
25 Miranda JS, Malta NV, De Carvalho RLA, et al. Which low-fusing porcelain glaze treatment technique is better to promote a vitreous surface on Y-TZP ceramic[J]. Rev Odonto Ciênc, 2017, 32(4): 174-179.
26 Marchack BW, Sato S, Marchack CB, et al. Complete and partial contour zirconia designs for crowns and fixed dental prostheses: a clinical report[J]. J Prosthet Dent, 2011, 106(3): 145-152.
27 Wandscher VF, Prochnow C, Rippe MP, et al. Retentive strength of Y-TZP crowns: comparison of diffe-rent silica coating methods on the intaglio surfaces[J]. Oper Dent, 2017, 42(5): E121-E133.
28 Jin CX, Wang JR, Huang YT, et al. Effects of hydrofluoric acid concentration and etching time on the bond strength to ceramic-coated zirconia[J]. J Adhes Dent, 2022, 24(1): 125-136.
29 Thammajaruk P, Blatz MB, Buranadham S, et al. Shear bond strength of composite cement to alumina-coated versus tribochemical silica-treated zirconia[J]. J Mech Behav Biomed Mater, 2020, 105: 103710.
30 Ranjan R, Krishnamraju PV, Shankar T, et al. Nonthermal plasma in dentistry: an update[J]. J Int Soc Prev Community Dent, 2017, 7(3): 71-75.
31 Altuntas M, Colgecen O, Ercan UK, et al. Nonthermal plasma treatment can eliminate sandblasting procedure for zirconia-resin cement bonding[J]. Int J Prosthodont, 2022, 35(6): 752-760.
32 Ye XY, Liu MY, Li J, et al. Effects of cold atmospheric plasma treatment on resin bonding to high-translucency zirconia ceramics[J]. Dent Mater J, 2022, 41(6): 896-904.
33 Karthigeyan S, Ravindran AJ, Bhat RTR, et al. Surface modification techniques for zirconia-based bioceramics: a review[J]. J Pharm Bioallied Sci, 2019, 11(): S131-S134.
34 Scaminaci Russo D, Cinelli F, Sarti C, et al. Adhesion to zirconia: a systematic review of current conditioning methods and bonding materials[J]. Dent J, 2019, 7(3): 74.
35 Abhishek G, Vishwanath SK, Nair A, et al. Compara-tive evaluation of bond strength of resin cements with and without 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to zirconia and effect of thermocycling on bond strength-an in vitro study[J]. J Clin Exp Dent, 2022, 14(4): e316-e320.
36 Franco-Tabares S, Stenport VF, Hjalmarsson L, et al. Chemical bonding to novel translucent zirconias: a mechanical and molecular investigation[J]. J Adhes Dent, 2019, 21(2): 107-116.
37 陈莹. 不同浓度及溶剂对磷酸酯单体MDP与氧化锆间化学亲和力的影响[D]. 南京: 南京医科大学, 2018.
Chen Y. The effects of concentration and solvent on the chemical affinity of phosphate monomer MDP to dental zirconia[D]. Nanjing: Nanjing Medical University, 2018.
38 Yoshida K. Effect of 10-methacryloyloxydecyl dihydrogen phosphate concentrations in primers on bonding resin cements to zirconia[J]. J Prosthodont, 2021, 30(4): 356-362.
39 Shimizu H, Inokoshi M, Takagaki T, et al. Bonding efficacy of 4-META/MMA-TBB resin to surface-treated highly translucent dental zirconia[J]. J Adhes Dent, 2018, 20(5): 453-459.
40 Shimoe S, Hirata I, Otaku M, et al. Formation of chemical bonds on zirconia surfaces with acidic functional monomers[J]. J Oral Sci, 2018, 60(2): 187-193.
41 Khanlar LN, Takagaki T, Inokoshi M, et al. The effect of carboxyl-based monomers on resin bonding to highly translucent zirconia ceramics[J]. Dent Mater J, 2020, 39(6): 956-962.
42 Garcia IM, Soto-Montero J, Collares FM, et al. Bonding of resin cements to ultra-translucent zirconia after aging for 24 hours and 1 year[J]. Int J Pros-thodont, 2022, 35(4): 460-468.
43 Serichetaphongse P, Chitsutheesiri S, Chengprapa-korn W. Comparison of the shear bond strength of composite resins with zirconia and titanium using different resin cements[J]. J Prosthodont Res, 2022, 66(1): 109-116.
44 Liu JF, Yang CC, Luo JL, et al. Bond strength of self-adhesive resin cements to a high transparency zirconia crown and dentin[J]. J Dent Sci, 2022, 17(2): 973-983.
[1] 吴礼安. 部分断冠粘接术在儿童恒前牙复杂冠根折中的初步应用[J]. 国际口腔医学杂志, 2023, 50(6): 623-631.
[2] 孙旭,邓振南,文才,赵颖. Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察[J]. 国际口腔医学杂志, 2023, 50(6): 669-673.
[3] 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685.
[4] 薛晶, 杨静. 基于循证实践的Ⅱ类洞复合树脂修复的操作要点[J]. 国际口腔医学杂志, 2023, 50(4): 375-387.
[5] 丁景瑜,田子璐,王惠敏,朱轩言,杨宇斌,朱松. 即刻牙本质封闭的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 121-124.
[6] 王剑. 浅谈嵌体和高嵌体修复的临床应用[J]. 国际口腔医学杂志, 2021, 48(5): 497-505.
[7] 刘昱晨,田敏,牛丽娜,方明. 粘接固定桥存留率的影响因素及提高对策[J]. 国际口腔医学杂志, 2021, 48(5): 585-591.
[8] 黎敏,华成舸,蒋丽. 提高氧化锆陶瓷粘接性能新技术的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 485-490.
[9] 钮晔,曾芸婷,曾悦翔,张泽宇,肖立伟. 数字化技术在直丝弓托槽间接粘接中的应用[J]. 国际口腔医学杂志, 2021, 48(4): 491-496.
[10] 沈冬妮,施莹,傅柏平. 后牙牙合贴面修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 287-291.
[11] 刘敏,张宽收,刘青梅. 激光蚀刻牙体组织在直接粘接技术中的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 292-296.
[12] 刘恩言,李明云. 茶多酚类化合物在牙本质粘接中应用的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 732-738.
[13] 韩雨亭,吴燕茹. 应用龈壁提升术修复牙体缺损的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 349-355.
[14] 秦娇娇,焦珊,王成坤. Er:YAG和Nd:YAG激光对牙本质与瓷修复体粘接面粘接强度影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 361-366.
[15] 侯晔坡,高杰. Er:YAG激光照射对牙科陶瓷材料粘接影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 68-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!