国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (4): 450-455.doi: 10.7518/gjkq.2024060
• 材料学专栏 • 上一篇
Xuemin Yao(),Hua Wang,Lu Wang,Bin Zhao(
)
摘要:
半透明氧化锆作为新一代的氧化锆全瓷材料,具有良好的力学和光学性能,常应用于前牙美学区修复。要获得良好的远期修复效果,关键在于尽可能提高该材料的粘接强度,因此明确半透明氧化锆陶瓷材料粘接效果的影响因素非常重要。在实际应用中,半透明氧化锆的粘接效果会受到多种因素的影响,本文主要就半透明氧化锆陶瓷的组成与结构、表面处理方法、表面改性方法,粘接性单体与底涂剂等影响因素的研究进展作一综述,为其临床应用提供参考。
中图分类号:
1 | Sulaiman TA, Suliman AA, Abdulmajeed AA, et al. Zirconia restoration types, properties, tooth preparation design, and bonding. A narrative review[J]. J Esthet Restor Dent, 2024, 36(1): 78-84. |
2 | Souza R, Barbosa F, Araújo G, et al. Ultrathin monolithic zirconia veneers: reality or future? Report of a clinical case and one-year follow-up[J]. Oper Dent, 2018, 43(1): 3-11. |
3 | Zhang CN, Zhu Y, Zhang YJ, et al. Clinical esthetic comparison between monolithic high-translucency multilayer zirconia and traditional veneered zirconia for single implant restoration in maxillary esthetic areas: prosthetic and patient-centered outcomes[J]. J Dent Sci, 2022, 17(3): 1151-1159. |
4 | 黎敏, 华成舸, 蒋丽. 提高氧化锆陶瓷粘接性能新技术的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 485-490. |
Li M, Hua CG, Jiang L. Research progress on new technology for improving adhesion properties of zirconia ceramics[J]. Int J Stomatol, 2021, 48(4): 485-490. | |
5 | Alqutaibi AY, Ghulam O, Krsoum M, et al. Revolution of current dental zirconia: a comprehensive review[J]. Molecules, 2022, 27(5): 1699. |
6 | Dongre P, Kavar D. Translucent zirconia-a step towards esthetics-a narrative review[J]. Int J Curr Sci Res Rev, 2023, 6(3): 2084-2091. |
7 | Kwon SJ, Lawson NC, McLaren EE, et al. Comparison of the mechanical properties of translucent zirconia and lithium disilicate[J]. J Prosthet Dent, 2018, 120(1): 132-137. |
8 | Alammar A, Blatz MB. The resin bond to high-translucent zirconia-a systematic review[J]. J Esthet Restor Dent, 2022, 34(1): 117-135. |
9 | Oğuz Eİ, Özgür ME, Sungur S, et al. Impact of multiple firings and resin cement type on shear bond strength between zirconia and resin cements[J]. J Adv Prosthodont, 2020, 12(4): 197-203. |
10 | 高士军, 裴鹏飞, 卢薇, 等. 饰瓷温度烧结对氧化锆陶瓷与树脂黏结剂剪切强度的影响[J]. 中国组织工程研究, 2013, 17(51): 8809-8814. |
Gao SJ, Pei PF, Lu W, et al. Decorative porcelain temperature firing affects the shear bond strength between zirconia ceramics and resin binder[J]. Chin J Tissue Eng Res, 2013, 17(51): 8809-8814. | |
11 | Grangeiro M, Demachkia AM, Rodrigues CS, et al. Effect of multiple firings on the microshear bond strength between a translucent zirconia and a resin cement[J]. Oper Dent, 2023, 48(3): 329-336. |
12 | Quigley NP, Loo DSS, Choy C, et al. Clinical efficacy of methods for bonding to zirconia: a systematic review[J]. J Prosthet Dent, 2021, 125(2): 231-240. |
13 | Xiong YH, Zhao P, Jin CX, et al. Effect of airborne-particle abrasion protocols and MDP-based primer on the bond strength of highly translucent zirconia[J]. J Adhes Dent, 2021, 23(5): 437-446. |
14 | Zhang XY, Liang W, Jiang F, et al. Effects of air-abrasion pressure on mechanical and bonding pro-perties of translucent zirconia[J]. Clin Oral Investig, 2021, 25(4): 1979-1988. |
15 | McLaren EA, Maharishi A, White SN. Influence of yttria content and surface treatment on the strength of translucent zirconia materials[J]. J Prosthet Dent, 2023, 129(4): 638-643. |
16 | Aung SSMP, Takagaki T, Lyann SK, et al. Effects of alumina-blasting pressure on the bonding to super/ultra-translucent zirconia[J]. Dent Mater, 2019, 35(5): 730-739. |
17 | AlMutairi R, AlNahedh H, Maawadh A, et al. Effects of different air particle abrasion protocols on the biaxial flexural strength and fractography of high/ultra-translucent zirconia[J]. Materials, 2021, 15(1): 244. |
18 | El Gamal A, Medioni E, Rocca JP, et al. Shear bond, wettability and AFM evaluations on CO2 laser-irradiated CAD/CAM ceramic surfaces[J]. Lasers Med Sci, 2017, 32(4): 779-785. |
19 | Tzanakakis EG, Dimitriadi M, Tzoutzas I, et al. Effect of water storage on hardness and interfacial strength of resin composite luting agents bonded to surface-treated monolithic zirconia[J]. Dent J, 2021, 9(7): 78. |
20 | Akpinar YZ, Yavuz T, Aslan MA, et al. Effect of different surface shapes formed by femtosecond laser on zirconia-resin cement shear bond strength[J]. J Adhes Sci Technol, 2015, 29(3): 149-157. |
21 | Tzanakakis EC, Beketova A, Papadopoulou L, et al. Novel femto laser patterning of high translucent zirconia as an alternative to conventional particle abrasion[J]. Dent J, 2021, 9(2): 20. |
22 | Abu Ruja M, de Souza GM, Finer Y. Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement[J]. Dent Mater, 2019, 35(11): 1545-1556. |
23 | Amaral R, Ozcan M, Valandro LF, et al. Effect of conditioning methods on the microtensile bond strength of phosphate monomer-based cement on zirconia ceramic in dry and aged conditions[J]. J Biomed Mater Res B Appl Biomater, 2008, 85(1): 1-9. |
24 | Sousa RS, Campos F, Sarmento HR, et al. Surface roughness and bond strength between Y-TZP and self-adhesive resin cement after air particle abrasion protocols[J]. Gen Dent, 2016, 64(5): 50-55. |
25 | Miranda JS, Malta NV, De Carvalho RLA, et al. Which low-fusing porcelain glaze treatment technique is better to promote a vitreous surface on Y-TZP ceramic[J]. Rev Odonto Ciênc, 2017, 32(4): 174-179. |
26 | Marchack BW, Sato S, Marchack CB, et al. Complete and partial contour zirconia designs for crowns and fixed dental prostheses: a clinical report[J]. J Prosthet Dent, 2011, 106(3): 145-152. |
27 | Wandscher VF, Prochnow C, Rippe MP, et al. Retentive strength of Y-TZP crowns: comparison of diffe-rent silica coating methods on the intaglio surfaces[J]. Oper Dent, 2017, 42(5): E121-E133. |
28 | Jin CX, Wang JR, Huang YT, et al. Effects of hydrofluoric acid concentration and etching time on the bond strength to ceramic-coated zirconia[J]. J Adhes Dent, 2022, 24(1): 125-136. |
29 | Thammajaruk P, Blatz MB, Buranadham S, et al. Shear bond strength of composite cement to alumina-coated versus tribochemical silica-treated zirconia[J]. J Mech Behav Biomed Mater, 2020, 105: 103710. |
30 | Ranjan R, Krishnamraju PV, Shankar T, et al. Nonthermal plasma in dentistry: an update[J]. J Int Soc Prev Community Dent, 2017, 7(3): 71-75. |
31 | Altuntas M, Colgecen O, Ercan UK, et al. Nonthermal plasma treatment can eliminate sandblasting procedure for zirconia-resin cement bonding[J]. Int J Prosthodont, 2022, 35(6): 752-760. |
32 | Ye XY, Liu MY, Li J, et al. Effects of cold atmospheric plasma treatment on resin bonding to high-translucency zirconia ceramics[J]. Dent Mater J, 2022, 41(6): 896-904. |
33 | Karthigeyan S, Ravindran AJ, Bhat RTR, et al. Surface modification techniques for zirconia-based bioceramics: a review[J]. J Pharm Bioallied Sci, 2019, 11(): S131-S134. |
34 | Scaminaci Russo D, Cinelli F, Sarti C, et al. Adhesion to zirconia: a systematic review of current conditioning methods and bonding materials[J]. Dent J, 2019, 7(3): 74. |
35 | Abhishek G, Vishwanath SK, Nair A, et al. Compara-tive evaluation of bond strength of resin cements with and without 10-methacryloyloxydecyl dihydrogen phosphate (MDP) to zirconia and effect of thermocycling on bond strength-an in vitro study[J]. J Clin Exp Dent, 2022, 14(4): e316-e320. |
36 | Franco-Tabares S, Stenport VF, Hjalmarsson L, et al. Chemical bonding to novel translucent zirconias: a mechanical and molecular investigation[J]. J Adhes Dent, 2019, 21(2): 107-116. |
37 | 陈莹. 不同浓度及溶剂对磷酸酯单体MDP与氧化锆间化学亲和力的影响[D]. 南京: 南京医科大学, 2018. |
Chen Y. The effects of concentration and solvent on the chemical affinity of phosphate monomer MDP to dental zirconia[D]. Nanjing: Nanjing Medical University, 2018. | |
38 | Yoshida K. Effect of 10-methacryloyloxydecyl dihydrogen phosphate concentrations in primers on bonding resin cements to zirconia[J]. J Prosthodont, 2021, 30(4): 356-362. |
39 | Shimizu H, Inokoshi M, Takagaki T, et al. Bonding efficacy of 4-META/MMA-TBB resin to surface-treated highly translucent dental zirconia[J]. J Adhes Dent, 2018, 20(5): 453-459. |
40 | Shimoe S, Hirata I, Otaku M, et al. Formation of chemical bonds on zirconia surfaces with acidic functional monomers[J]. J Oral Sci, 2018, 60(2): 187-193. |
41 | Khanlar LN, Takagaki T, Inokoshi M, et al. The effect of carboxyl-based monomers on resin bonding to highly translucent zirconia ceramics[J]. Dent Mater J, 2020, 39(6): 956-962. |
42 | Garcia IM, Soto-Montero J, Collares FM, et al. Bonding of resin cements to ultra-translucent zirconia after aging for 24 hours and 1 year[J]. Int J Pros-thodont, 2022, 35(4): 460-468. |
43 | Serichetaphongse P, Chitsutheesiri S, Chengprapa-korn W. Comparison of the shear bond strength of composite resins with zirconia and titanium using different resin cements[J]. J Prosthodont Res, 2022, 66(1): 109-116. |
44 | Liu JF, Yang CC, Luo JL, et al. Bond strength of self-adhesive resin cements to a high transparency zirconia crown and dentin[J]. J Dent Sci, 2022, 17(2): 973-983. |
[1] | 吴礼安. 部分断冠粘接术在儿童恒前牙复杂冠根折中的初步应用[J]. 国际口腔医学杂志, 2023, 50(6): 623-631. |
[2] | 孙旭,邓振南,文才,赵颖. Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察[J]. 国际口腔医学杂志, 2023, 50(6): 669-673. |
[3] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[4] | 薛晶, 杨静. 基于循证实践的Ⅱ类洞复合树脂修复的操作要点[J]. 国际口腔医学杂志, 2023, 50(4): 375-387. |
[5] | 丁景瑜,田子璐,王惠敏,朱轩言,杨宇斌,朱松. 即刻牙本质封闭的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 121-124. |
[6] | 王剑. 浅谈嵌体和高嵌体修复的临床应用[J]. 国际口腔医学杂志, 2021, 48(5): 497-505. |
[7] | 刘昱晨,田敏,牛丽娜,方明. 粘接固定桥存留率的影响因素及提高对策[J]. 国际口腔医学杂志, 2021, 48(5): 585-591. |
[8] | 黎敏,华成舸,蒋丽. 提高氧化锆陶瓷粘接性能新技术的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 485-490. |
[9] | 钮晔,曾芸婷,曾悦翔,张泽宇,肖立伟. 数字化技术在直丝弓托槽间接粘接中的应用[J]. 国际口腔医学杂志, 2021, 48(4): 491-496. |
[10] | 沈冬妮,施莹,傅柏平. 后牙牙合贴面修复的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 287-291. |
[11] | 刘敏,张宽收,刘青梅. 激光蚀刻牙体组织在直接粘接技术中的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 292-296. |
[12] | 刘恩言,李明云. 茶多酚类化合物在牙本质粘接中应用的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 732-738. |
[13] | 韩雨亭,吴燕茹. 应用龈壁提升术修复牙体缺损的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 349-355. |
[14] | 秦娇娇,焦珊,王成坤. Er:YAG和Nd:YAG激光对牙本质与瓷修复体粘接面粘接强度影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 361-366. |
[15] | 侯晔坡,高杰. Er:YAG激光照射对牙科陶瓷材料粘接影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 68-72. |
|