国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (3): 287-291.doi: 10.7518/gjkq.2021030
Shen Dongni(),Shi Ying,Fu Baiping(
)
摘要:
牙合贴面是指覆盖后牙牙合面所有牙尖,以粘接固位为主的修复体。随着口腔粘接技术和修复材料的发展,口腔微创理念和技术的普及,牙合贴面修复为后牙牙合面缺损提供了一种相较于全冠更能保存剩余牙体组织的修复方法,尤其适用于酸蚀磨耗引起的牙合面表浅缺损的活髓后牙。本文就牙合贴面的定义、适应证与禁忌证、材料选择、牙体预备、粘接技术、术后并发症及其处理作一综述,以期为牙合贴面的进一步研究与应用提供参考。
中图分类号:
[1] | Edelhoff D, Sorensen JA. Tooth structure removal associated with various preparation designs for posterior teeth[J]. Int J Periodontics Restorative Dent, 2002,22(3):241-249. |
[2] |
Magne P, Schlichting LH, Maia HP, et al. In vitro fatigue resistance of CAD/CAM composite resin and ceramic posterior occlusal veneers[J]. J Prosthet Dent, 2010,104(3):149-157.
doi: 10.1016/S0022-3913(10)60111-4 |
[3] | Ferraris F. Posterior indirect adhesive restorations (PIAR): preparation designs and adhesthetics clinical protocol[J]. Int J Esthet Dent, 2017,12(4):482-502. |
[4] |
Veneziani M. Posterior indirect adhesive restorations: updated indications and the morphology driven preparation technique[J]. Int J Esthet Dent, 2017,12(2):204-230.
pmid: 28653051 |
[5] |
Morimoto S, Rebello de Sampaio FB, Braga MM, et al. Survival rate of resin and ceramic inlays, onlays, and overlays: a systematic review and Meta-analysis[J]. J Dent Res, 2016,95(9):985-994.
doi: 10.1177/0022034516652848 |
[6] |
Arnetzl GV, Arnetzl G. Reliability of nonretentive all-ceramic CAD/CAM overlays[J]. Int J Comput Dent, 2012,15(3):185-197.
pmid: 23252219 |
[7] |
Magne P, Stanley K, Schlichting LH. Modeling of ultrathin occlusal veneers[J]. Dent Mater, 2012,28(7):777-782.
doi: 10.1016/j.dental.2012.04.002 |
[8] |
Heck K, Paterno H, Lederer A, et al. Fatigue resistance of ultrathin CAD/CAM ceramic and nanoceramic composite occlusal veneers[J]. Dent Mater, 2019,35(10):1370-1377.
doi: 10.1016/j.dental.2019.07.006 |
[9] | The glossary of prosthodontic terms: ninth edition[J]. J Prosthet Dent, 2017,117(5S):e1-e105. |
[10] |
Rocca GT, Saratti CM, Cattani-Lorente M, et al. The effect of a fiber reinforced cavity configuration on load bearing capacity and failure mode of endodontically treated molars restored with CAD/CAM resin composite overlay restorations[J]. J Dent, 2015,43(9):1106-1115.
doi: S0300-5712(15)30002-6 pmid: 26149065 |
[11] |
Belleflamme MM, Geerts SO, Louwette MM, et al. No post-no core approach to restore severely damaged posterior teeth: an up to 10-year retrospective study of documented endocrown cases[J]. J Dent, 2017,63:1-7.
doi: S0300-5712(17)30093-3 pmid: 28456557 |
[12] |
Edelhoff D, Güth JF, Erdelt K, et al. Clinical performance of occlusal onlays made of Lithium disilicate ceramic in patients with severe tooth wear up to 11 years[J]. Dent Mater, 2019,35(9):1319-1330.
doi: S0109-5641(19)30110-1 pmid: 31256912 |
[13] |
Resende TH, Reis KR, Schlichting LH, et al. Ultrathin CAD-CAM ceramic occlusal veneers and anterior bilaminar veneers for the treatment of moderate dental biocorrosion: a 1.5-year follow-up[J]. Oper Dent, 2018,43(4):337-346.
doi: 10.2341/17-007-T pmid: 29584553 |
[14] |
Oudkerk J, Eldafrawy M, Bekaert S, et al. The one-step no-prep approach for full-mouth rehabilitation of worn dentition using PICN CAD-CAM restorations: 2-year results of a prospective clinical study[J]. J Dent, 2020,92:103245.
doi: S0300-5712(19)30250-7 pmid: 31747585 |
[15] |
Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced Lithium silicate glass-ceramic[J]. Dent Mater, 2016,32(7):908-914.
doi: 10.1016/j.dental.2016.03.013 |
[16] |
Niem T, Youssef N, Wöstmann B. Energy dissipation capacities of CAD-CAM restorative materials: a comparative evaluation of resilience and toughness[J]. J Prosthet Dent, 2019,121(1):101-109.
doi: 10.1016/j.prosdent.2018.05.003 |
[17] |
Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials[J]. Dent Mater, 2016,32(11):e275-e283.
doi: 10.1016/j.dental.2016.08.222 |
[18] | Tian T, Tsoi JK, Matinlinna JP, et al. Aspects of bonding between resin luting cements and glass ceramic materials[J]. Dent Mater, 2014,30(7):e147-e162. |
[19] |
Clausen JO, Abou Tara M, Kern M. Dynamic fatigue and fracture resistance of non-retentive all-ceramic full-coverage molar restorations. Influence of ceramic material and preparation design[J]. Dent Mater, 2010,26(6):533-538.
doi: 10.1016/j.dental.2010.01.011 |
[20] |
Bakeman EM, Rego N, Chaiyabutr Y, et al. Influence of ceramic thickness and ceramic materials on fracture resistance of posterior partial coverage restorations[J]. Oper Dent, 2015,40(2):211-217.
doi: 10.2341/12-459-L pmid: 25330270 |
[21] |
Spitznagel FA, Boldt J, Gierthmuehlen PC. CAD/CAM ceramic restorative materials for natural teeth[J]. J Dent Res, 2018,97(10):1082-1091.
doi: 10.1177/0022034518779759 |
[22] |
Mainjot AK, Dupont NM, Oudkerk JC, et al. From artisanal to CAD-CAM blocks: state of the art of indirect composites[J]. J Dent Res, 2016,95(5):487-495.
doi: 10.1177/0022034516634286 |
[23] |
Al-Akhali M, Chaar MS, Elsayed A, et al. Fracture resistance of ceramic and polymer-based occlusal veneer restorations[J]. J Mech Behav Biomed Mater, 2017,74:245-250.
doi: S1751-6161(17)30251-5 pmid: 28633093 |
[24] |
Maeder M, Pasic P, Ender A, et al. Load-bearing capacities of ultra-thin occlusal veneers bonded to dentin[J]. J Mech Behav Biomed Mater, 2019,95:165-171.
doi: S1751-6161(19)30013-X pmid: 31009900 |
[25] |
Chen CF, Trindade FZ, de Jager N, et al. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses[J]. Dent Mater, 2014,30(9):954-962.
doi: 10.1016/j.dental.2014.05.018 |
[26] |
Sasse M, Krummel A, Klosa K, et al. Influence of restoration thickness and dental bonding surface on the fracture resistance of full-coverage occlusal veneers made from Lithium disilicate ceramic[J]. Dent Mater, 2015,31(8):907-915.
doi: 10.1016/j.dental.2015.04.017 |
[27] |
Baldissara P, Monaco C, Onofri E, et al. Fatigue resistance of monolithic Lithium disilicate occlusal veneers: a pilot study[J]. Odontology, 2019,107(4):482-490.
doi: 10.1007/s10266-019-00417-7 pmid: 30840218 |
[28] |
Andrade JP, Stona D, Bittencourt HR, et al. Effect of different computer-aided design/computer-aided manufacturing (CAD/CAM) materials and thick-nesses on the fracture resistance of occlusal veneers[J]. Oper Dent, 2018,43(5):539-548.
doi: 10.2341/17-131-L pmid: 29513638 |
[29] |
Johnson AC, Versluis A, Tantbirojn D, et al. Fracture strength of CAD/CAM composite and composite-ceramic occlusal veneers[J]. J Prosthodont Res, 2014,58(2):107-114.
doi: 10.1016/j.jpor.2014.01.001 pmid: 24636368 |
[30] |
Wang CY, Ou YY, Zhang L, et al. Effects of regional enamel and prism orientations on bovine enamel bond strength and cohesive strength[J]. Eur J Oral Sci, 2018,126(4):334-342.
doi: 10.1111/eos.2018.126.issue-4 |
[31] | Bazos P, Magne P. Bio-Emulation: biomimetically emulating nature utilizing a histoanatomic approach; visual synjournal[J]. Int J Esthet Dent, 2014,9(3):330-352. |
[32] |
Shahrbaf S, Mirzakouchaki B, Oskoui SS, et al. The effect of marginal ridge thickness on the fracture resistance of endodontically-treated, composite restored maxillary premolars[J]. Oper Dent, 2007,32(3):285-290.
pmid: 17555181 |
[33] |
Edelhoff D, Ahlers MO. Occlusal onlays as a modern treatment concept for the reconstruction of severely worn occlusal surfaces[J]. Quintessence Int, 2018,49(7):521-533.
doi: 10.3290/j.qi.a40482 pmid: 29881829 |
[34] |
Ioannidis A, Mühlemann S, Özcan M, et al. Ultra-thin occlusal veneers bonded to enamel and made of ceramic or hybrid materials exhibit load-bearing capacities not different from conventional restorations[J]. J Mech Behav Biomed Mater, 2019,90:433-440.
doi: S1751-6161(18)31114-7 pmid: 30447557 |
[35] | Sofan E, Sofan A, Palaia G, et al. Classification review of dental adhesive systems: from the Ⅳ generation to the universal type[J]. Ann Stomatol (Roma), 2017,8(1):1-17. |
[36] |
Rosa WL, Piva E, Silva AF. Bond strength of universal adhesives: a systematic review and Meta-analysis[J]. J Dent, 2015,43(7):765-776.
doi: 10.1016/j.jdent.2015.04.003 |
[37] |
Krummel A, Garling A, Sasse M, et al. Influence of bonding surface and bonding methods on the fracture resistance and survival rate of full-coverage occlusal veneers made from Lithium disilicate ceramic after cyclic loading[J]. Dent Mater, 2019,35(10):1351-1359.
doi: S0109-5641(18)31346-0 pmid: 31351579 |
[38] |
Magne P. Immediate dentin sealing: a fundamental procedure for indirect bonded restorations[J]. J Esthet Restor Dent, 2005,17(3):144-155.
doi: 10.1111/jerd.2005.17.issue-3 |
[1] | 吴礼安. 部分断冠粘接术在儿童恒前牙复杂冠根折中的初步应用[J]. 国际口腔医学杂志, 2023, 50(6): 623-631. |
[2] | Huangphattarakul Vicha,满毅. 上颌窦提升中上颌窦黏骨膜穿孔的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 552-557. |
[3] | 王仁义,赵呈智,潘剑. 拔牙围手术期预防性使用抗生素对术后并发症影响的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 558-565. |
[4] | 薛晶, 杨静. 基于循证实践的Ⅱ类洞复合树脂修复的操作要点[J]. 国际口腔医学杂志, 2023, 50(4): 375-387. |
[5] | 李春洁, 毕小琴, 朱桂全. 口腔颌面部肿瘤患者游离皮瓣修复术的并发症预防及处理[J]. 国际口腔医学杂志, 2023, 50(2): 127-137. |
[6] | 丁景瑜,田子璐,王惠敏,朱轩言,杨宇斌,朱松. 即刻牙本质封闭的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 121-124. |
[7] | 王剑. 浅谈嵌体和高嵌体修复的临床应用[J]. 国际口腔医学杂志, 2021, 48(5): 497-505. |
[8] | 刘昱晨,田敏,牛丽娜,方明. 粘接固定桥存留率的影响因素及提高对策[J]. 国际口腔医学杂志, 2021, 48(5): 585-591. |
[9] | 黎敏,华成舸,蒋丽. 提高氧化锆陶瓷粘接性能新技术的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 485-490. |
[10] | 钮晔,曾芸婷,曾悦翔,张泽宇,肖立伟. 数字化技术在直丝弓托槽间接粘接中的应用[J]. 国际口腔医学杂志, 2021, 48(4): 491-496. |
[11] | 刘敏,张宽收,刘青梅. 激光蚀刻牙体组织在直接粘接技术中的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 292-296. |
[12] | 刘恩言,李明云. 茶多酚类化合物在牙本质粘接中应用的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 732-738. |
[13] | 谭凯璇,李帆,张利娟,李姗姗,卢洁,张颖,杨芳. 根管再治疗并发皮下气肿1例[J]. 国际口腔医学杂志, 2020, 47(5): 563-566. |
[14] | 唐蓓,赵文俊,王虎,郑广宁,游梦. 根管超填导致下牙槽神经损伤2例[J]. 国际口腔医学杂志, 2020, 47(3): 293-296. |
[15] | 付栩楠,谢志刚. 种植固定修复中基台机械并发症的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 571-577. |
|