国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (6): 644-655.doi: 10.7518/gjkq.2021104

• 论著 • 上一篇    下一篇

光子引导的光声流效应在根管荡洗中应用的系统评价

何蓉(),刘学军(),周宇琨   

  1. 郑州大学第一附属医院口腔特诊科 郑州 450052
  • 收稿日期:2021-02-04 修回日期:2021-07-15 出版日期:2021-11-01 发布日期:2021-10-28
  • 通讯作者: 刘学军
  • 作者简介:何蓉,住院医师,硕士,Email: 675384051@qq.com

Systematic review on the effect of photon-initiated photoacoustic streaming in endodontic irrigation

He Rong(),Liu Xuejun(),Zhou Yukun   

  1. Dept. of Special Clinic, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
  • Received:2021-02-04 Revised:2021-07-15 Online:2021-11-01 Published:2021-10-28
  • Contact: Xuejun Liu

摘要:

目的 评价掺铒钇铝石榴石(Er: YAG)激光光子引导的光声流(PIPS)效应在根管荡洗中的作用效果。方法 计算机检索中国知网、万方数据知识服务平台、维普中文科技期刊数据库、PubMed、Embase、Cochrane Library、Web of Science、SCOPUS数据库,纳入有关PIPS根管荡洗作用的随机对照试验,检索时间从2010年1月至2020年7月,所选文献按照纳入和排除标准进行筛选,根据Cochrane系统评价的方法进行风险评估,根据《系统综述和荟萃分析优先报告的条目:PRISMA声明》确定的项目进行评价。结果 最终共纳入45篇文章,通过归类描述和系统评价,这些文章体现了PIPS技术在灭菌、去除玷污层及牙本质碎屑、去除根管内氢氧化钙、增加牙本质小管渗透性等方面有显著的成效,但是仍有部分实验结果未能体现PIPS技术的优势。目前,PIPS技术的研究中存在实验对象(离体牙根管长度和弯曲度的差异)以及实验过程和方法未标准化、研究方法存在差异等问题,缺少根管微裂、根尖溢出冲洗液和碎屑、标准参数、不同根管荡洗方法作用效果的比较、随机对照的临床试验等方面的相关研究。结论 大多数实验结果表明PIPS在灭菌、去除玷污层及牙本质碎屑、去除根管内氢氧化钙、增加牙本质小管渗透性等方面有显著的成效,但仍有实验结果存在争议,需要更多长期、大样本、高质量、设计严谨的实验来验证这些结论。

关键词: 掺铒钇铝石榴石激光, 光子引导的光声流, 根管治疗, 根管清创, 细菌, 玷污层, 牙本质小管渗透, 微裂

Abstract:

Objective This work aims to evaluate the effect of photon-initiated photoacoustic streaming (PIPS) induced by Er: YAG laser activation on root canal irrigation. Methods Randomized controlled trials (RCTs) on the effect of PIPS in root canal irrigation in China were searched using China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform, VIP Chinese Science and Technology Journal Database, PubMed, Embase, Cochrane Library, Web of Science, SCOPUS. All studies were published between January 2010 and July 2020 and were subsequently screened based on the inclusion and exclusion criteria. Item risk assessment and evaluation were conducted following the method of the Cochrane systematic review and PRISMA Guidelines. Results Forty-five eligible studies were included for description classification and systematic review. Results showed that PIPS has a significant effect on sterilizing; removing the smear layer, dentin debris, and calcium hydroxide from root canals; and increasing the depth of dentin tubule penetration. However, some findings failed to reflect the advantages of PIPS. At present, research on PIPS in terms of subjects (differences in length and curvature of isolated canals) remains lacking. The procedures and methods are not standardized, thus leading to differences in the research methods. Studies on root canal micro-fractures, irrigation solution and debris squeezed from apical foramen, standard parameters, comparison of various methods of irrigation, and randomized controlled clinical trials are also lacking. Conclusion Most studies showed that the PIPS of Er: YAG has significant effects on removing the bacteria, smear layer, dentin debris, and calcium hydroxide of root canals and increasing the depth of dentin tubule penetration. However, some results are controversial. This conclusion requires long-term, high-quality, and well-designed RCTs with large sample sizes for further validation.

Key words: Er: YAG laser, photon-initiated photoacoustic streaming, root canal treatment, root canal debridement, bacteria, smear layer, dentin tubule penetration, microcrack

中图分类号: 

  • R781.33

图1

筛选流程图"

表1

风险评估表"

参考文献 样本量计算 同一操作者进行根管预备 同一操作者进行根管荡洗 牙齿预备荡洗过程标准化 牙齿是否随机分组 对照组和实验组使用的冲洗液是否相同 是否报告了操作者在使用PIPS方面的经验 研究人员是否使用盲法评估实验结果 风险评估
[7] 中度
[8] 中度
[9] 高度
[10] 高度
[11] 高度
[12] 高度
[13] 高度
[14] 高度
[15] 高度
[16] 高度
[17] 高度
[18] 高度
[19] 中度
[20] 高度
[21] 中度
[22] 高度
[23] 高度
[24] 高度
[25] 中度
[26] 高度
[27] 高度
[28] 高度
[29] 中度
[30] 高度
[31] 高度
[32] 高度
[33] 高度
[34] 高度
[35] 中度
[36] 高度
[37] 中度
[38] 高度
[39] 中度
[40] 高度
[41] 高度
[42] 高度
[43] 高度
[44] 中度
[45] 高度
[46] 中度
[47] 中度
[48] 高度
[49] 高度
[50] 高度
[51] 高度

表2

PIPS灭菌效果的相关文献汇总"

参考文献 研究对象 根管弯曲度 牙齿
类型
根长/mm 总样本量 PIPS参数设置 PIPS荡洗时间 冲洗液 检测方法 作者结论
[7] PIPS、Nd: YAG、CI 单根牙 14 110 35 mJ、15 Hz、
50 μs
20 s 1% NaClO 扫描电子显微镜 PIPS相比常规冲洗能去除更多的粪肠球菌生物膜
[18] PIPS、CI 单根牙 50 15 Hz、20 mJ、
50 μs、0.3 W
1 min、
2 min
5.25% NaClO 菌落计数、扫描电子显微镜 PIPS能有效去除根管内细菌
[17] PIPS、PUI、CI 单根牙 14 70 10 Hz、50 mJ 30 s 6% NaClO 菌落计数、组织学染色 PIPS能有效去除根管内细菌
[10] PIPS、CI 单根牙 86 10或20 mJ、
15 Hz、50 μs、0.15或0.3 W
2 min 1%或3%或5% NaClO 菌落计数和扫描电子显微镜 在10或20 mJ的能量下,PIPS均能有效去除细菌
[11] PIPS、CI 单根牙 68 15 Hz、20 mJ、
50 μs、0.3 W
90 s 6% NaClO和生理盐水 菌落计数、扫描电子显微镜、激光共聚焦显微镜 PIPS相比于其他组能有效去除细菌
[12] PIPS、SI、CI 单根牙 90 15 Hz、20 mJ、
50 μs、0.3 W
60 s 2.5% NaClO、Qmix PCR扩增、菌落计数 PIPS激活冲洗液灭菌作用与对照组无明显差异
[13] PIPS、CI 单根牙 148 15 Hz、20 mJ、
50 μs、0.3 W
30 s 5% NaClO 菌落计数 各组间细菌清除率无明显差异
[14] PIPS、CI 单根牙 26 15 Hz、20 mJ、
50 μs、0.3 W
60 s 5% NaClO 菌落计数、扫描电子显微镜 PIPS相比于其他组能有效去除细菌
[15] PIPS、CI 单根牙 48 15 Hz、20 mJ、
50 μs、0.3 W
60 s 3% NaClO 菌落计数、扫描电子显微镜 PIPS能去除细菌效果和注射器冲洗效果相当
[16] PIPS、Er, Cr: YSGG、Nd: YAG、LD 单根牙 70 15 Hz、20 mJ、
50 μs、0.3 W
1 min、3 min 5.25% NaClO 扫描电子显微镜、激光共聚焦显微镜 PIPS能有效去除根管内细菌

表3

PIPS去除玷污层作用的文献汇总"

参考文献 研究对象 根管弯曲度 牙齿
类型
根长/mm 总样本量 PIPS参数设置 PIPS荡洗时间 冲洗液 检测方法 作者结论
[20] PIPS、Er: YAG、Nd: YAG 单根牙 60 1 W、20 Hz、
50 mJ
60 s 蒸馏水 扫描电子显微镜 PIPS和其他LAI方法均比常规冲洗去除更多的玷污层
[21] PIPS、Nd:YAG、LD 单根牙 11±1 45 15 Hz、20 mJ、50 μs、0.3 W 60 s 5% NaClO 扫描电子显微镜 PIPS体现出良好的玷污层去除效果
[22] PIPS、Er: YAG、Nd: YAG、PUI、SAF、CI 单根牙 90 45 mJ、20 Hz、
0.9 W、50 µs
10 s×3次 5% NaClO、
17% EDTA
扫描电子显微镜 PIPS和其他LAI方法均比常规冲洗去除更多的玷污层
[23] PIPS、Er: YAG、CI 单根牙 30 20 mJ、15 Hz、
0.3 W、50 μs
30 s 生理盐水 扫描电子显微镜 PIPS和Preciso工作尖激活生理盐水没有增强玷污层的去除效果
[10] PIPS 单根牙 86 10/20 mJ、
0.15/0.3 W
150 s 1%、3%、5% NaClO,17% EDTA 菌落计数和扫描电子显微镜 PIPS激活5% NaClO体现出良好的细菌杀灭和玷污层去除效果
[24] PIPS、Er: YAG 单根牙 81 0.3、0.6、0.9 W 10 g·L-1 NaClO 扫描电子显微镜和根尖染料浸润 0.3 W的模式下能良好地清理玷污层,与其他实验组无明显差异
[25] PIPS、PUI 单根牙 16 52 20/30 mJ、15/30 Hz、0.3/0.9 W、50 μs 1 min 1% NaClO 扫描电子显微镜 2种功率的PIPS均能有效去除玷污层,效果无明显差异
[30] PIPS、Nd: YAG、CI 单根牙 30 40 mJ、20 Hz 5 s×3次 5.25% NaClO、17% EDTA 扫描电子显微镜 PIPS体现出良好的玷污层去除效果
[31] PIPS、Nd: YAG、Er, Cr: YSGG、CI 单根牙 96 20 mJ、15 Hz、
0.3 W
80 s 2.5% NaClO、17% EDTA、蒸馏水 扫描电子显微镜 PIPS和其他LAI方法均比常规冲洗去除更多的玷污层
[32] PIPS、Xpulse 单根牙 18 10/24 mJ、10 Hz 10 s 5.25% NaClO 扫描电子显微镜 24 mJ的PIPS具有良好的玷污层去除效果
[33] PIPS、CI 单根牙 64 20 mJ、50 Hz、
0.3 W、50 μs
30 s×2次 20 % EDTA 扫描电子显微镜 PIPS没有提高玷污层去除水平
[34] PIPS、Er: YAG、SI、CI 单根牙 16 64 20 mJ、15 Hz、
0.3 W
20 s×3次 Qmix 扫描电子显微镜 PIPS和SI去除玷污层效果均优于CI
[35] PIPS、ANP、CI 单根牙 17 142 20 mJ、15 Hz、
0.3 W、50 μs
30 s×2次 5% NaClO、17% EDTA 扫描电子显微镜 PIPS、ANP、CI去除玷污层的效果差异无统计学意义
[36] PIPS 单根牙 80 20 mJ、15 Hz、
0.3 W、50 μs
30 s 17% EDTA 扫描电子显微镜 PIPS体现出良好的玷污层去除效果

表4

PIPS对牙本质碎屑清除效果的文献汇总"

参考文献 研究对象 根管弯曲度 牙齿类型 根长 总样本量 PIPS参数
设置
PIPS荡洗时间 冲洗液 检测方法 作者结论
[28] PIPS、Er: YAG、UAI 下颌磨牙近中根 69 20 mJ、20 Hz、50 μs 20 s×3次 2.5% NaClO micro-CT PIPS与其他组均能有效清除根管内碎屑,但是都未完全去除
[38] PIPS、SNI 下颌磨牙近中根 16 20 mJ、15 Hz、0.3 W 2 min 6% NaClO、17% EDTA micro-CT PIPS能有效清除根管内碎屑,清除量是SNI的2.6倍
[26] PIPS、Er: YAG、UAI、MAI、CI 有根管峡部的磨牙 50 20 mJ、20 Hz、50 μs 20 s×3次 2.5% NaClO 显微镜下拍照、碎屑评分 激光组比CI更能有效去除根管内碎屑
[27] PIPS 单根牙 12 20 mJ、15 Hz、0.3 W 10~30 s 2.5% NaClO micro-CT PIPS可以增强根管内碎屑去除能力

表5

PIPS清除根管内药物作用的文献汇总"

参考文献 研究对象 根管弯曲度 牙齿类型 根长 总样本量 PIPS参数设置 PIPS荡洗时间 冲洗液 检测方法 作者结论
[8] PIPS 单根牙 36 20 mJ、15 Hz、50 μs、0.3 W 60 s 2.5% NaClO micro-CT PIPS能有效去除根管内药物
[19] PIPS、LD、Nd: YAG、Er: YAG、ANP、PUI、CI 单根牙 80 20 mJ、15 Hz、0.3 W、50 μs 20 s 17% EDTA 纤维桩粘接强度测试 PIPS去除纤维桩效果最佳
[29] PIPS、PUI、CI 下颌磨牙winne Ⅱ型根管 30 20 mJ、15 Hz 2 min 8.25% NaClO、17% EDTA micro-CT PIPS去除根管内药物作用更好

表6

PIPS对牙本质小管渗透作用影响的相关文献汇总"

参考文献 研究对象 根管弯曲度 牙齿类型 根长/mm 总样本量 PIPS参数设置 PIPS荡洗时间/s 冲洗液 检测方法 作者结论
[41] PIPS、Er: YAG、PUI、SI、CI 单根圆形根管 65 30 mJ、30 Hz、
0.9 W
60 5% NaClO 激光共聚焦显微镜 PIPS能够增加牙本质小管的渗透性
[42] PIPS、PUI、CI 单根圆形根管 156 30 mJ、30 Hz、
0.9 W
60 5% NaClO 激光共聚焦显微镜 PIPS和PUI相比于CI均能够增加牙本质小管的渗透性
[35] PIPS、ANP、CI 单根牙 17 142 20 mJ、15 Hz、
0.3 W、50 μs
30 5% NaClO 扫描电子显微镜、激光共聚焦显微镜 PIPS增加牙本质小管渗透性且能去除更多的玷污层
[1] 刘正. 感染根管的细菌学研究[J]. 国外医学·口腔医学分册, 1982, 9(6):336-339.
Liu Z. Bacteriological study of infected root canals[J]. Foreign Med Sci (Stomatol), 1982, 9(6):336-339.
[2] Santos AL, Siqueira JF, Rôças IN, et al. Comparing the bacterial diversity of acute and chronic dental root canal infections[J]. PLoS One, 2011, 6(11):e28088.
doi: 10.1371/journal.pone.0028088
[3] 周学东. 成人根管系统形态与根管治疗难度评估[J]. 中国实用口腔科杂志, 2008, 1(1):5-9.
Zhou XD. Morphology of the adult root canal system and assessment of the difficulty of root canal treat-ment[J]. Chin J Pract Stomatol, 2008, 1(1):5-9.
[4] Arnold M, Ricucci D, Siqueira JF. Infection in a complex network of apical ramifications as the cause of persistent apical periodontitis: a case report[J]. J Endod, 2013, 39(9):1179-1184.
doi: 10.1016/j.joen.2013.04.036
[5] Takahashi K, Machida T, Kimura Y, et al. The morphological study of root canal walls with Er: YAG laser[J]. J Jpn Endod Assoc, 1996, 17(2):197-203.
[6] Roper MJ, White JM, Goodis HE, et al. Two-dimensional changes and surface characteristics from an erbium laser used for root canal preparation[J]. Lasers Surg Med, 2010, 42(5):379-383.
doi: 10.1002/lsm.20918 pmid: 20583251
[7] Ozses Ozkaya B, Gulsahi K, Ungor M, et al. A comparison of Er: YAG laser with photon-initiated photoacoustic streaming, Nd: YAG laser, and conventional irrigation on the eradication of root dentinal tubule infection by Enterococcus faecalis biofilms: a scanning electron microscopy study[J]. Scanning, 2017, 2017:6215482.
doi: 10.1155/2017/6215482 pmid: 29279728
[8] Suk M, Bago I, Katić M, et al. The efficacy of photon-initiated photoacoustic streaming in the removal of calcium silicate-based filling remnants from the root canal after rotary retreatment[J]. Lasers Med Sci, 2017, 32(9):2055-2062.
doi: 10.1007/s10103-017-2325-4
[9] Swimberghe RCD, Coenye T, De Moor RJG, et al. Biofilm model systems for root canal disinfection: a literature review[J]. Int Endod J, 2019, 52(5):604-628.
doi: 10.1111/iej.13050 pmid: 30488449
[10] Golob BS, Olivi G, Vrabec M, et al. Efficacy of photon-induced photoacoustic streaming in the reduction of Enterococcus faecalis within the root canal: different settings and different sodium hypochlorite concentrations[J]. J Endod, 2017, 43(10):1730-1735.
doi: 10.1016/j.joen.2017.05.019
[11] Al Shahrani M, DiVito E, Hughes CV , et al. Enhanced removal of Enterococcus faecalis biofilms in the root canal using sodium hypochlorite plus photon-induced photoacoustic streaming: an in vitro study[J]. Photomed Laser Surg, 2014, 32(5):260-266.
doi: 10.1089/pho.2014.3714
[12] Balić M, Lucić R, Mehadžić K, et al. The efficacy of photon-initiated photoacoustic streaming and so-nic-activated irrigation combined with QMiX solution or sodium hypochlorite against intracanal E. faecalis biofilm[J]. Lasers Med Sci, 2016, 31(2):335-342.
doi: 10.1007/s10103-015-1864-9
[13] Pedullà E, Genovese C, Campagna E, et al. Decontamination efficacy of photon-initiated photoacoustic streaming (PIPS) of irrigants using low-energy laser settings: an ex vivo study[J]. Int Endod J, 2012, 45(9):865-870.
doi: 10.1111/j.1365-2591.2012.02044.x pmid: 22486805
[14] Olivi G, DiVito E, Peters O, et al. Disinfection efficacy of photon-induced photoacoustic streaming on root canals infected with Enterococcus faecalis: an ex vivo study[J]. J Am Dent Assoc, 2014, 145(8):843-848.
doi: 10.14219/jada.2014.46
[15] Zhu X, Yin X, Chang JW, et al. Comparison of the antibacterial effect and smear layer removal using photon-initiated photoacoustic streaming aided irrigation versus a conventional irrigation in single-rooted canals: an in vitro study[J]. Photomed Laser Surg, 2013, 31(8):371-377.
doi: 10.1089/pho.2013.3515
[16] Wang XL, Cheng XG, Liu X, et al. Bactericidal effect of various laser irradiation systems on Enterococcus faecalis biofilms in dentinal tubules: a confocal laser scanning microscopy study[J]. Photomed Laser Surg, 2018, 36(9):472-479.
doi: 10.1089/pho.2017.4430
[17] Peters OA, Bardsley S, Fong J, et al. Disinfection of root canals with photon-initiated photoacoustic strea-ming[J]. J Endod, 2011, 37(7):1008-1012.
doi: 10.1016/j.joen.2011.03.016 pmid: 21689561
[18] 田甜甜. PIPS-Er: YAG激光在不同根尖终末工作宽度时对根管内粪肠球菌杀灭效果的研究[D]. 西安: 第四军医大学, 2016.
Tian TT. Bactericidal effect of PIPS-Er: YAG laser with different apical terminal working width on Enterococcus faecalis in experimentally infected root canals[D]. Xi’an: The Fourth Military Medical University, 2016.
[19] Akyuz Ekim SN, Erdemir A. Comparison of diffe-rent irrigation activation techniques on smear layer removal: an in vitro study[J]. Microsc Res Tech, 2015, 78(3):230-239.
doi: 10.1002/jemt.v78.3
[20] Doğanay Yıldız E, Dinçer B, Fidan ME. Effect of different laser-assisted irrigation activation techni-ques on apical debris extrusion[J]. Acta Odontol Scand, 2020, 78(5):332-336.
doi: 10.1080/00016357.2020.1717603 pmid: 31986947
[21] Korkut E, Torlak E, Gezgin O, et al. Antibacterial and smear layer removal efficacy of Er: YAG laser irradiation by photon-induced photoacoustic strea-ming in primary molar root canals: a preliminary study[J]. Photomed Laser Surg, 2018, 36(9):480-486.
doi: 10.1089/pho.2017.4369 pmid: 29905503
[22] Keles A, Kamalak A, Keskin C, et al. The efficacy of laser, ultrasound and self-adjustable file in remo-ving smear layer debris from oval root canals follo-wing retreatment: a scanning electron microscopy study[J]. Aust Endod J, 2016, 42(3):104-111.
doi: 10.1111/aej.12145 pmid: 26786709
[23] Sippus J, Gutknecht N. Deep disinfection and tubular smear layer removal with Er: YAG using photon-induced photoacoustic streaming (PIPS) contra laser-activated irrigation (LAI) technics[J]. Lasers Dent Sci, 2019, 3(1):37-42.
doi: 10.1007/s41547-018-0050-3
[24] 孙宁佳, 郭威. Er: YAG激光和超声荡洗对根管内壁形态及微渗漏的比较研究[J]. 牙体牙髓牙周病学杂志, 2017, 27(12):689-697, 712.
Sun NJ, Guo W. Comparison of root canal morpho-logy and microleakage after cleaning with Er: YAG laser and ultrasonic irrigation[J]. Chin J Conserv Dent, 2017, 27(12):689-697, 712.
[25] 刘敏, 彭彬. 两种功率PIPS-Er: YAG激光对根管内玷污层去除效果的比较研究[J]. 口腔医学研究, 2018, 34(10):1067-1071.
Liu M, Peng B. Comparison of photon-initiated photoacoustic streaming with two kinds of power settings on removal of smear layer[J]. J Oral Sci Res, 2018, 34(10):1067-1071.
[26] Passalidou S, Calberson F, de Bruyne M , et al. Debris removal from the mesial root canal system of mandibular molars with laser-activated irrigation[J]. J Endod, 2018, 44(11):1697-1701.
doi: S0099-2399(18)30434-5 pmid: 30241679
[27] Todea C, Mocuta D, Manescu A, et al. Laser use in endodontic for increase the adhesion of root canal filling. A synchrotron radiation micro tomography study[J]. Rev Chim, 2018, 69(8):2144-2149.
doi: 10.37358/RC.18.8.6489
[28] Verstraeten J, Jacquet W, De Moor RJG, et al. Hard tissue debris removal from the mesial root canal system of mandibular molars with ultrasonically and laser-activated irrigation: a micro-computed tomography study[J]. Lasers Med Sci, 2017, 32(9):1965-1970.
doi: 10.1007/s10103-017-2297-4
[29] Lloyd A, Navarrete G, Marchesan MA, et al. Removal of calcium hydroxide from Weine TypeⅡsystems using photon-induced photoacoustic strea-ming, passive ultrasonic, and needle irrigation: a microcomputed tomography study[J]. J Appl Oral Sci, 2016, 24(6):543-548.
doi: S1678-77572016000600543 pmid: 28076457
[30] Sathe S, Hegde V, Jain P, et al. Effectiveness of Er: YAG (PIPS) and Nd: YAG activation on final irri-gants for smear layer removal-SEM observation[J]. J Dent Lasers, 2014, 8(1):8.
doi: 10.4103/0976-2868.134110
[31] Ozbay Y, Erdemir A. Effect of several laser systems on removal of smear layer with a variety of irrigation solutions[J]. Microsc Res Tech, 2018, 81(10):1214-1222.
doi: 10.1002/jemt.v81.10
[32] Luca R, Carmen Todea MD, Bălăbuc C, et al. Alternative techniques in root canal debridement[C]//Proc SPIE 8925, Fifth International Conference on lasers in medicine: biotechnologies integrated in daily medicine. Berlin: Springer, 2014: 89250F1-89250F7.
[33] Nasher R, Franzen R, Gutknecht N. The effectiveness of the Erbium: Yttrium aluminum garnet PIPS technique in comparison to different chemical solutions in removing the endodontic smear layer-an in vitro profilometric study[J]. Lasers Med Sci, 2016, 31(9):1871-1882.
doi: 10.1007/s10103-016-2063-z
[34] Akcay M, Arslan H, Durmus N, et al. Dentinal tubule penetration of AH Plus, iRoot SP, MTA fillapex, and guttaflow bioseal root canal sealers after different final irrigation procedures: a confocal microscopic study[J]. Lasers Surg Med, 2016, 48(1):70-76.
doi: 10.1002/lsm.22446
[35] Turkel E, Onay EO, Ungor M. Comparison of three final irrigation activation techniques: effects on canal cleanness, smear layer removal, and dentinal tubule penetration of two root canal sealers[J]. Photomed Laser Surg, 2017, 35(12):672-681.
doi: 10.1089/pho.2016.4234 pmid: 28437194
[36] DiVito E, Peters OA, Olivi G. Effectiveness of the Erbium: YAG laser and new design radial and stripped tips in removing the smear layer after root canal instrumentation[J]. Lasers Med Sci, 2012, 27(2):273-280.
doi: 10.1007/s10103-010-0858-x
[37] Kamaci A, Aydin B, Erdilek N. The effect of ultrasonically activated irrigation and laser based root canal irrigation methods on debris removal[J]. Int J Artif Organs, 2017. doi: 10.5301/ijao.5000646.
doi: 10.5301/ijao.5000646
[38] Lloyd A, Uhles JP, Clement DJ, et al. Elimination of intracanal tissue and debris through a novel laser-activated system assessed using high-resolution micro-computed tomography: a pilot study[J]. J Endod, 2014, 40(4):584-587.
doi: 10.1016/j.joen.2013.10.040 pmid: 24666917
[39] Deleu E, Meire MA, De Moor RJ. Efficacy of laser-based irrigant activation methods in removing debris from simulated root canal irregularities[J]. Lasers Med Sci, 2015, 30(2):831-835.
doi: 10.1007/s10103-013-1442-y
[40] Parčina I, Amižić, Miletić I, et al. Influence of laser activated irrigation with two erbium lasers on bond strength of inidividually formed fiber reinforced composite posts to root canal dentin[J]. Acta Stomatol Croat, 2016, 50(4):321-328.
doi: 10.15644/asc50/4/5 pmid: 28275279
[41] Akcay M, Arslan H, Mese M, et al. Effect of photon-initiated photoacoustic streaming, passive ultraso-nic, and sonic irrigation techniques on dentinal tubule penetration of irrigation solution: a confocal microscopic study[J]. Clin Oral Investig, 2017, 21(7):2205-2212.
doi: 10.1007/s00784-016-2013-y
[42] Miletić I, Chieffi N, Rengo C, et al. Effect of photon induced photoacoustic streaming (PIPS) on bond strength to dentine of two root canal filling materials[J]. Lasers Surg Med, 2016, 48(10):951-954.
doi: 10.1002/lsm.22536 pmid: 27254395
[43] Vidas J, Snjaric D, Braut A, et al. Comparison of apical irrigant solution extrusion among conventio-nal and laser-activated endodontic irrigation[J]. Lasers Med Sci, 2020, 35(1):205-211.
doi: 10.1007/s10103-019-02846-w
[44] Arslan D, Kustarci A. Efficacy of photon-initiated photoacoustic streaming on apically extruded debris with different preparation systems in curved canals[J]. Int Endod J, 2018, 51(Suppl 1):e65-e72.
doi: 10.1111/iej.2018.51.issue-S1
[45] Guneser MB, Arslan D, Usumez A. Tissue dissolution ability of sodium hypochlorite activated by photon-initiated photoacoustic streaming technique[J]. J Endod, 2015, 41(5):729-732.
doi: 10.1016/j.joen.2015.01.014 pmid: 25728817
[46] Kamalak A, Uzun I, Arslan H, et al. Fracture resistance of endodontically retreated roots after retreatment using self-adjusting file, passive ultrasonic irrigation, photon-induced photoacoustic streaming, or laser[J]. Photomed Laser Surg, 2016, 34(10):467-472.
pmid: 27598303
[47] Dagher J, El Feghali R, Parker S, et al. Postoperative quality of life following conventional endodontic intracanal irrigation compared with laser-activa-ted irrigation: a randomized clinical study[J]. Photobiomodul Photomed Laser Surg, 2019, 37(4):248-253.
doi: 10.1089/photob.2018.4558
[48] Azim AA, Aksel H, Zhuang TT, et al. Efficacy of 4 irrigation protocols in killing bacteria colonized in dentinal tubules examined by a novel confocal laser scanning microscope analysis[J]. J Endod, 2016, 42(6):928-934.
doi: 10.1016/j.joen.2016.03.009
[49] Ayranci LB, Arslan H, Akcay M, et al. Effectiveness of laser-assisted irrigation and passive ultrasonic irrigation techniques on smear layer removal in middle and apical thirds[J]. Scanning, 2016, 38(2):121-127.
doi: 10.1002/sca.21247 pmid: 26183211
[50] Jezeršek M, Jereb T, Lukač N, et al. Evaluation of apical extrusion during novel Er: YAG laser-activa-ted irrigation modality[J]. Photobiomodul Photomed Laser Surg, 2019, 37(9):544-550.
doi: 10.1089/photob.2018.4608 pmid: 31335265
[51] Jezeršek M, Lukač N, Lukač M, et al. Measurement of pressures generated in root canal during Er: YAG laser-activated irrigation[J]. Photobiomodul Photo-med Laser Surg, 2020, 38(10):625-631.
[52] 何新宇, 彭丽莉, 王众, 等. 光子引导的光声流效应在根管治疗术中的研究进展[J]. 牙体牙髓牙周病学杂志, 2018, 28(11):673-676, 679.
He XY, Peng LL, Wang Z, et al. Disinfection of root canals with photon-initiated photoacoustic streaming: a review[J]. Chin J Conserv Dent, 2018, 28(11):673-676, 679.
[53] De Moor RJG, Meire M. High-power lasers in en-dodontics-fiber placement for laser-enhanced en-dodontics: in the canal or at the orifice[J]. J Laser Health Acad, 2014, 2014(1):20-28.
[54] 谷苗, 陈兴兴, 林媛, 等. 自制根管润滑剂与不同浓度次氯酸钠液组合对粪肠球菌感染根管壁的清洁效果[J]. 牙体牙髓牙周病学杂志, 2009, 19(5):275-279.
Gu M, Chen XX, Lin Y, et al. Cleaning efficacy of a self-made lubricant combined with different concen-trations of NaClO on root canal walls infected by Enterococcus faecalis[J]. Chin J Conserv Dent, 2009, 19(5):275-279.
[55] da Silva LA, Nelson-Filho P, Faria G, et al. Bacterial profile in primary teeth with necrotic pulp and periapical lesions[J]. Braz Dent J, 2006, 17(2):144-148.
doi: 10.1590/S0103-64402006000200012
[56] Dönmez Özkan H, Kaval ME, Özkan G, et al. Efficacy of two different nickel-titanium rotary systems in retreatment procedure with or without laser-activated irrigation: an in vitro study[J]. Photobiomodul Photomed Laser Surg, 2019, 37(8):495-499.
doi: 10.1089/photob.2019.4637
[57] Mamootil K, Messer HH. Penetration of dentinal tubules by endodontic sealer cements in extracted teeth and in vivo[J]. Int Endod J, 2007, 40(11):873-881.
pmid: 17764458
[58] Lin ZM, Ling JQ, Fang JY, et al. Physicochemical properties, sealing ability, bond strength and cytoto-xicity of a new dimethacrylate-based root canal sealer[J]. J Formos Med Assoc, 2010, 109(11):819-827.
doi: 10.1016/S0929-6646(10)60127-1
[59] Abbaszadeh HA, Peyvandi AA, Peyvandi AA, et al. Er: YAG laser and cyclosporine-a effect on cell cycle regulation of human gingival fibroblast cells[J]. J Lasers Med Sci, 2017, 8(3):143-149.
doi: 10.15171/jlms.2017.26
[60] Lukac N, Muc BT, Jezersek M, et al. Photoacoustic endodontics using the novel SWEEPS Er: YAG laser modality[J]. J Laser Health Acad, 2017, 2047(1):1-7.
[1] 吴思佳,舒畅,王洋,王媛,邓淑丽,王慧明. 根管内感染控制对年轻恒牙牙髓再生治疗的影响及研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 388-394.
[2] 高宇天,苏勤. 酸性氧化电位水在根管治疗中的研究与应用[J]. 国际口腔医学杂志, 2023, 50(4): 401-406.
[3] 汪牡丹,宋东哲,黄定明. 开髓洞型对患牙根管治疗术后抗折性能影响的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 186-194.
[4] 王璐璇,侯本祥. 根管内氢氧化钙残留对根管治疗的影响[J]. 国际口腔医学杂志, 2022, 49(3): 367-372.
[5] 杨加震,张颖,刘育含,李帆,曾飞,李修珍,马玉莹,杨芳. 口腔诊疗环境细菌群落的时间变化趋势研究[J]. 国际口腔医学杂志, 2022, 49(2): 132-137.
[6] 戢晓,景钫淇,李雅,薛晶. 根管预备顺序的数据模拟优化研究[J]. 国际口腔医学杂志, 2022, 49(1): 37-47.
[7] 邢桂琪,郭林溪,苏勤. 根管治疗后疾病的综合评估和治疗决策[J]. 国际口腔医学杂志, 2021, 48(5): 579-584.
[8] 彭玮琪,高原,徐欣. 髓腔通路设计的微创理念及其研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 433-438.
[9] 李米雪子,张琛. 椅旁计算机辅助设计/计算机辅助制作髓腔固位冠修复根管治疗后磨牙的临床考量[J]. 国际口腔医学杂志, 2021, 48(3): 274-279.
[10] 李诗佳,陈秋宇,邹静,黄睿洁. 尼古丁对口腔细菌单独或混合培养时菌群数目调控的研究[J]. 国际口腔医学杂志, 2021, 48(3): 305-311.
[11] 易祖木,王昕宇,伍颖颖. 糖尿病患者口腔细菌多样性的变化[J]. 国际口腔医学杂志, 2020, 47(5): 522-529.
[12] 谭凯璇,李帆,张利娟,李姗姗,卢洁,张颖,杨芳. 根管再治疗并发皮下气肿1例[J]. 国际口腔医学杂志, 2020, 47(5): 563-566.
[13] 唐蓓,赵文俊,王虎,郑广宁,游梦. 根管超填导致下牙槽神经损伤2例[J]. 国际口腔医学杂志, 2020, 47(3): 293-296.
[14] 王蕊,盖阔,刘梦齐,蒋丽. 原子力显微镜在细菌黏附力学研究中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 687-692.
[15] 许庆安,樊明文. 非器械根管治疗与多声波超洁净系统[J]. 国际口腔医学杂志, 2019, 46(5): 522-525.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .