国际口腔医学杂志 ›› 2022, Vol. 49 ›› Issue (2): 132-137.doi: 10.7518/gjkq.2022017

• 论著 • 上一篇    下一篇

口腔诊疗环境细菌群落的时间变化趋势研究

杨加震1,2(),张颖3,刘育含1,李帆4,曾飞1,2,李修珍1,马玉莹1,2,杨芳1()   

  1. 1.青岛大学附属青岛市市立医院口腔医学中心 青岛 266071
    2.大连医科大学口腔医学院 大连 116044
    3.中国人民解放军东部战区总医院口腔科 南京 211299
    4.天津医科大学口腔医院 天津 300070
  • 收稿日期:2021-05-14 修回日期:2021-11-18 出版日期:2022-03-01 发布日期:2022-03-15
  • 通讯作者: 杨芳
  • 作者简介:杨加震,医师,硕士,Email: 17865651571@163.com
  • 基金资助:
    国家自然科学基金(81670979)

Time variation trend of bacterial community in oral diagnosis and treatment environment

Yang Jiazhen1,2(),Zhang Ying3,Liu Yuhan1,Li Fan4,Zeng Fei1,2,Li Xiuzhen1,Ma Yuying1,2,Yang Fang1()   

  1. 1. Stomatology Center, Qingdao Municipal Hospital, Qingdao University, Qingdao 266071, China
    2. School of Stomatology, Dalian Medical University, Dalian 116044, China
    3. Dept. of Stomatology, General Hospital of Eastern Theater of Chinese People’s Liberation Army, Nanjing 211299, China
    4. Stomatological Hospital, Tianjin Medical University, Tianjin 300070, China
  • Received:2021-05-14 Revised:2021-11-18 Online:2022-03-01 Published:2022-03-15
  • Contact: Fang Yang
  • Supported by:
    National Natural Science Foundation of China(81670979)

摘要:

目的 应用16S rRNA高通量测序技术探究口腔诊疗环境细菌群落特征,及其随着投入使用时间增加的变化趋势,为口腔诊疗环境感染防控提供一定的理论依据。方法 选取新装修口腔内科诊室3间,分别于投入使用前(G1组)、使用1月(G2组)、使用3月(G3组),采集环境表面样本,利用Illumina MiSeq测序技术对16S rRNA V3-V4区测序,进行细菌群落结构及多样性差异分析。结果 G1组的物种丰富度高于G3组(P<0.05),3组间的菌落结构的差异具有统计学意义(P<0.05);细菌群落主要属于变形菌门、厚壁菌门、拟杆菌门等7个门,不同时间组的优势菌门占比相对稳定(P>0.05);丰度前30的细菌属中检测到埃希氏菌-志贺氏菌、链球菌、假单胞菌等7种潜在致病菌,其中埃希氏菌-志贺氏菌在诊室使用3月时明显增高(P<0.05),而假单胞菌明显降低(P<0.05)。结论 口腔诊疗环境呈现出丰富的细菌多样性,随着诊室投入使用周期延长,菌落结构更为相似。

关键词: 口腔诊疗环境, 高通量测序, 细菌群落, 交叉感染

Abstract:

Objective This study aimed to explore the characteristics of bacterial community in oral diagnosis and treatment environment by 16S rRNA high-throughput sequencing technology and its changing trend with the increase of application time to provide theoretical basis for the prevention and control of oral diagnosis and treatment environment infection. Methods Three newly renovated dental clinics were selected, and environmental surface samples were collected before use (G1 group), 1 month after use (G2 group) and 3 months after use (G3 group). Then, the 16SrRNA V3-V4 region was sequenced using Illumina MiSeq sequencing technology for the differential analysis of bacterial community structure and diversity. Results The species richness of G1 group was higher than that of G3 group (P<0.05), and a significant difference was observed in the colony structure among the three groups (P<0.05). The bacterial community mainly belonged to seven phyla, including Proteobacteria, Firmicutes and Bacteroidetes, and the proportion of dominant phyla was relatively stable in different time groups (P>0.05). Seven potential pathogenic bacteria, such as Escherichia-Shigella, Streptococcus and Pseudomonas, were detected in the top 30 bacterial genera in abundance, of which Escherichia-Shigella was significantly higher at 3 months of office use (P<0.05), while Pseudomonas was significantly lower (P<0.05). Conclusion The dental diagnosis and treatment environment shows rich bacterial diversity, and the colony structure is more similar with prolonged service cycle in the consultation room.

Key words: oral diagnosis and treatment environment, high-throughput sequencing, bacterial community, cross infection

中图分类号: 

  • R37

图1

样本稀释曲线图"

图2

基于OTU水平的Venn图"

图3

Chao1、Shannon和Simpson指数 *示 P<0.05; ns示 P>0.05。"

图4

3组细菌群落结构比较 A:蓝色表示组内任意2个样本间的未加权Unifrac距离,红色表示不同分组间任意两个样本的未加权Unifrac距离;B:3组样本的分离程度。"

图5

门水平上细菌类群比较"

图6

属水平上细菌类群比较 A:优势菌属的比较;B:致病菌属的比较;*:P<0.05。"

[1] Mark Welch JL, Ramírez-Puebla ST, Borisy GG. Oral microbiome geography: micron-scale habitat and niche[J]. Cell Host Microbe, 2020, 28(2): 160-168.
doi: 10.1016/j.chom.2020.07.009
[2] Rautemaa R, Nordberg A, Wuolijoki-Saaristo K, et al. Bacterial aerosols in dental practice-a potential hospital infection problem[J]. J Hosp Infect, 2006, 64(1): 76-81.
pmid: 16820249
[3] Vidana R, Sillerström E, Ahlquist M, et al. Potential for nosocomial transmission of Enterococcus faecalis from surfaces in dental operatories[J]. Int Endod J, 2015, 48(6): 518-527.
doi: 10.1111/iej.12342 pmid: 25066305
[4] Ricci ML, Fontana S, Pinci F, et al. Pneumonia associated with a dental unit waterline[J]. Lancet, 2012, 379(9816): 684.
doi: 10.1016/S0140-6736(12)60074-9
[5] Boyce JM. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals[J]. Antimicrob Resist Infect Control, 2016, 5: 10.
doi: 10.1186/s13756-016-0111-x
[6] Stewart EJ. Growing unculturable bacteria[J]. J Bacteriol, 2012, 194(16): 4151-4160.
doi: 10.1128/JB.00345-12 pmid: 22661685
[7] Merikanto I, Laakso JT, Kaitala V. Invasion ability and disease dynamics of environmentally growing opportunistic pathogens under outside-host competition[J]. PLoS One, 2014, 9(11): e113436.
doi: 10.1371/journal.pone.0113436
[8] Zhang Y, Ping YF, Zhou RY, et al. High throughput sequencing-based analysis of microbial diversity in dental unit waterlines supports the importance of providing safe water for clinical use[J]. J Infect Public Health, 2018, 11(3): 357-363.
doi: 10.1016/j.jiph.2017.09.017
[9] Costa D, Mercier A, Gravouil K, et al. Pyrosequencing analysis of bacterial diversity in dental unit waterlines[J]. Water Res, 2015, 81: 223-231.
doi: 10.1016/j.watres.2015.05.065
[10] Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584.
doi: 10.7717/peerj.2584
[11] Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5): 335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131
[12] Shobo CO, Alisoltani A, Abia ALK, et al. Bacterial diversity and functional profile of microbial populations on surfaces in public hospital environments in South Africa: a high throughput metagenomic analysis[J]. Sci Total Environ, 2020, 719: 137360.
doi: 10.1016/j.scitotenv.2020.137360
[13] Chopyk J, Akrami K, Bavly T, et al. Temporal variations in bacterial community diversity and composition throughout intensive care unit renovations[J]. Microbiome, 2020, 8(1): 86.
doi: 10.1186/s40168-020-00852-7
[14] Rampelotto PH, Sereia AFR, de Oliveira LFV, et al. Exploring the hospital microbiome by high-resolution 16S rRNA profiling[J]. Int J Mol Sci, 2019, 20(12): E3099.
[15] Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome[J]. Arch Microbiol, 2018, 200(4): 525-540.
doi: 10.1007/s00203-018-1505-3
[16] Yu XL, Chan Y, Zhuang LF, et al. Intra-oral single-site comparisons of periodontal and peri-implant microbiota in health and disease[J]. Clin Oral Implants Res, 2019, 30(8): 760-776.
doi: 10.1111/clr.v30.8
[17] Liu G, Wu C, Abrams WR, et al. Structural and functional characteristics of the microbiome in deep-dentin caries[J]. J Dent Res, 2020, 99(6): 713-720.
doi: 10.1177/0022034520913248 pmid: 32196394
[18] Wang XW, Zhao ZB, Tang N, et al. Microbial community analysis of saliva and biopsies in patients with oral lichen planus[J]. Front Microbiol, 2020, 11: 629.
doi: 10.3389/fmicb.2020.00629
[19] Xu J, Chen N, Wu Z, et al. 5-aminosalicylic acid alters the gut bacterial microbiota in patients with ulcerative colitis[J]. Front Microbiol, 2018, 9: 1274.
doi: 10.3389/fmicb.2018.01274
[20] Fujitani S, Sun HY, Yu VL, et al. Pneumonia due to Pseudomonas aeruginosa: part Ⅰ: epidemiology, clinical diagnosis, and source[J]. Chest, 2011, 139(4): 909-919.
doi: S0012-3692(11)60194-3 pmid: 21467058
[21] Mittal R, Aggarwal S, Sharma S, et al. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview[J]. J Infect Public Health, 2009, 2(3): 101-111.
doi: 10.1016/j.jiph.2009.08.003
[22] Wu DC, Chan WW, Metelitsa AI, et al. Pseudomonas skin infection: clinical features, epidemiology, and management[J]. Am J Clin Dermatol, 2011, 12(3): 157-169.
doi: 10.2165/11539770-000000000-00000
[23] Willcox MD. Pseudomonas aeruginosa infection and inflammation during contact lens wear: a review[J]. Optom Vis Sci, 2007, 84(4): 273-278.
pmid: 17435510
[24] Ribeiro LF, Lopes EM, Kishi LT, et al. Microbial community profiling in intensive care units expose limitations in current sanitary standards[J]. Front Public Health, 2019, 7: 240.
doi: 10.3389/fpubh.2019.00240
[1] 青薇,黄丽娟,郑佳俊,任静,李成龙,庹嫱,任小华,牟雁东. 16S核糖体DNA高通量测序研究种植体龈沟液微生物的变化[J]. 国际口腔医学杂志, 2019, 46(5): 532-539.
[2] 赵红, 王新林, 吕治, 王冬青, 苏建荣. 基于高通量测序技术研究慢性牙周炎患者龈下刮治和根面平整术治疗前后龈下菌群的变化[J]. 国际口腔医学杂志, 2017, 44(3): 294-300.
[3] 于淼 仪虹 郭笑. 母子间口腔群落结构的相关性分析[J]. 国际口腔医学杂志, 2015, 42(6): 664-667.
[4] 蒙筱娴. 口腔综合治疗台在交叉感染中的媒体作用及控制[J]. 国际口腔医学杂志, 2000, 27(04): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[7] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 房兵. 唇腭裂新生儿前颌骨矫正方法及对上颌骨生长发育的影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 杨美祥. 前牙厚度在预测上下颌牙量协调性中的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[10] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .