国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (6): 722-729.doi: 10.7518/gjkq.2025092

• 牙体牙髓病学专栏 • 上一篇    下一篇

牙体硬组织粘接界面抗酸碱层的研究进展

陈睿桢(),姜醒,沈纪元,林玲,郑志强,林捷()   

  1. 福建医科大学口腔医学院/附属口腔医院特诊科 福州 350002
  • 收稿日期:2024-08-16 修回日期:2024-10-04 出版日期:2025-11-01 发布日期:2025-10-23
  • 通讯作者: 林捷
  • 作者简介:陈睿桢,硕士,Email: crzzwddka@163.com
  • 基金资助:
    福建省自然科学基金(2023J01701)

Research progress of acid-base resistant zone for dental hard tissue bonding interface

Ruizhen Chen(),Xing Jiang,Jiyuan Shen,Ling Lin,Zhiqiang Zheng,Jie Lin()   

  1. Dept. of VIP Dental Service, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, China
  • Received:2024-08-16 Revised:2024-10-04 Online:2025-11-01 Published:2025-10-23
  • Contact: Jie Lin
  • Supported by:
    Natural Science Foundation of Fujian Province(2023J01701)

摘要:

扫描电子显微镜观察证实牙体粘接界面的混合层之下存在抗酸碱层(ABRZ),其形成与酸性功能性单体与牙体中的羟磷灰石发生化学反应有关。与传统混合层不同,ABRZ以树脂包裹的部分脱矿羟磷灰石为特征,可提升粘接界面的抗酸碱侵蚀能力及长期粘接耐久性。ABRZ在自酸蚀粘接系统中更易形成,其结构与粘接剂的化学组成密切相关。本文对ABRZ的微观结构、影响因素及形成机制作一综述,为牙体粘接的临床和科研提供参考。

关键词: 牙体粘接, 抗酸碱层, 牙本质, 牙釉质, 功能性单体, 自酸蚀粘接系统

Abstract:

Observation by scanning electron microscopy confirmed the existence of an acid-base resistant zone (ABRZ) beneath the hybrid layer at the dental bonding interface. The formation of this zone is related to the chemical reaction between acidic functional monomers and hydroxyapatite in dentin. Unlike the traditional hybrid layer, ABRZ is characterized by resin-encapsulated partially demineralized hydroxyapatite. This formation enhances the resistance of the bond interface to acid-base degradation and long-term bonding durability. Recent studies suggest that ABRZ forms more readily in self-etch adhesive systems. The structure of this zone is closely related to the chemical composition of the adhesive. In this review, the microstructure, influencing factors, and formation mechanism of ABRZ are summarized to provide insights for clinical and scientific research on dental bonding.

Key words: dental adhesion, acid-base resistant zone, dentin, enamel, functional monomer, self-etching adhesive system

中图分类号: 

  • R781.05

图 1

牙本质ABRZ在SEM下的典型结构示意图"

表 1

不同粘接系统ABRZ的优缺点"

粘接系统优点缺点
酸蚀-冲洗系统通过磷酸酸蚀剂预酸蚀牙釉质,增强单体渗透,促进ABRZ形成[28]用于牙本质时无法形成ABRZ[30];临床操作难度较高,可能导致邻近牙本质过度脱矿[15]
一步法自酸蚀形成薄层ABRZ[30];简化操作流程亲水性和疏水性单体的影响可降低粘接耐久性和ABRZ的形成[32];在ABRZ下方形成漏斗状缺损[30]
两步法自酸蚀形成较厚的ABRZ[10];Clearfil SE Bond作为金标准,提高粘接界面的耐酸性[11]操作流程相对复杂
实验性释氟粘接系统增加ABRZ厚度,创造高质量的ARBZ,并有效增强粘接耐久性[11];促进牙体硬组织的矿化,提高牙体的抗酸蚀能力[22]ABRZ的厚度和粘接强度受氟离子浓度的影响,需要精确控制氟的释放量[34];牙体基质的酸抵抗性增加可能会降低自酸蚀粘接系统的效果[32]
实验性含钙底涂剂增加ABRZ厚度,增加粘接界面的耐酸性,提高粘接界面耐久性和稳定性[21]需要与其他粘接剂或修复材料配合使用,增加了治疗的复杂性[21];降低早期粘接强度,特别是当与氟化物粘接剂结合使用时[21];仍需更多的临床研究来验证其长期效果和安全性

图 2

不同粘接系统牙本质ABRZ的形态学差异A:磷酸酸蚀粘接界面;B:一步法自酸蚀系统;C:两步法自酸蚀系统;D:两步法释氟粘接系统。"

[1] van Meerbeek B, Yoshihara K, van Landuyt K, et al. From buonocore’s pioneering acid-etch technique to self-adhering restoratives. A status perspective of rapidly advancing dental adhesive technology[J]. J Adhes Dent, 2020, 22(1): 7-34.
[2] Tsuchiya S, Nikaido T, Sonoda H, et al. Ultrastructure of the dentin-adhesive interface after acid-base challenge[J]. J Adhes Dent, 2004, 6(3): 183-190.
[3] Yoshihara K, Yoshida Y, Nagaoka N, et al. Nano-controlled molecular interaction at adhesive interfa-ces for hard tissue reconstruction[J]. Acta Biomater, 2010, 6(9): 3573-3582.
[4] Yoshihara K, Yoshida Y, Hayakawa S, et al. Nanolayering of phosphoric acid ester monomer on ena-mel and dentin[J]. Acta Biomater, 2011, 7(8): 3187-3195.
[5] Yoshida Y, Van Meerbeek B, Nakayama Y, et al. Adhesion to and decalcification of hydroxyapatite by carboxylic acids[J]. J Dent Res, 2001, 80(6): 1565-1569.
[6] Yoshioka M, Yoshida Y, Inoue S, et al. Adhesion/decalcification mechanisms of acid interactions with human hard tissues[J]. J Biomed Mater Res, 2002, 59(1): 56-62.
[7] Inoue G, Tsuchiya S, Nikaido T, et al. Morphological and mechanical characterization of the acid-base resistant zone at the adhesive-dentin interface of intact and caries-affected dentin[J]. Oper Dent, 2006, 31(4): 466-472.
[8] Guan R, Takagaki T, Matsui N, et al. Dentin bon-ding performance using Weibull statistics and eva-luation of acid-base resistant zone formation of recen-tly introduced adhesives[J]. Dent Mater J, 2016, 35(4): 684-693.
[9] Van Landuyt KL, Yoshida Y, Hirata I, et al. Influen-ce of the chemical structure of functional monomers on their adhesive performance[J]. J Dent Res, 2008, 87(8): 757-761.
[10] Tichy A, Hosaka K, Yang Y, et al. Can a new HEMA-free two-step self-etch adhesive improve dentin bonding durability and marginal adaptation[J]. J Adhes Dent, 2021, 23(6): 505-512.
[11] Kakiuchi Y, Takagaki T, Ikeda M, et al. Evaluation of MDP and NaF in two-step self-etch adhesives on enamel microshear bond strength and morphology of the adhesive-enamel interface[J]. J Adhes Dent, 2018, 20(6): 527-534.
[12] Carrilho E, Cardoso M, Marques Ferreira M, et al. 10-MDP based dental adhesives: adhesive interface characterization and adhesive stability-a systematic review[J]. Materials, 2019, 12(5): 790.
[13] Nurrohman H, Nikaido T, Takagaki T, et al. Apatite crystal protection against acid-attack beneath resin-dentin interface with four adhesives: TEM and crystallography evidence[J]. Dent Mater, 2012, 28(7): e89-e98.
[14] Yoshida Y, Nagakane K, Fukuda R, et al. Comparative study on adhesive performance of functional monomers[J]. J Dent Res, 2004, 83(6): 454-458.
[15] Waidyasekera K, Nikaido T, Weerasinghe DS, et al. Reinforcement of dentin in self-etch adhesive technology: a new concept[J]. J Dent, 2009, 37(8): 604-609.
[16] Nikaido T, Nurrohman H, Takagaki T, et al. Nanolea-kage in hybrid layer and acid-base resistant zone at the adhesive/dentin interface[J]. Microsc Microanal, 2015, 21(5): 1271-1277.
[17] Nikaido T, Inoue G, Takagaki T, et al. New strategy to create “Super Dentin” using adhesive technology: reinforcement of adhesive-dentin interface and protection of tooth structures[J]. Jpn Dent Sci Rev, 2011, 47(1): 31-42.
[18] Matsui N, Takagaki T, Sadr A, et al. The role of MDP in a bonding resin of a two-step self-etching adhesive system[J]. Dent Mater J, 2015, 34(2): 227-233.
[19] Vicheva M, Sato T, Takagaki T, et al. Effect of repair systems on dentin bonding performance[J]. Dent Mater J, 2021, 40(4): 903-910.
[20] Ko AK, Matsui N, Nakamoto A, et al. Effect of silver diammine fluoride application on dentin bon-ding performance[J]. Dent Mater J, 2020, 39(3): 407-414.
[21] Ochiai Y, Inoue G, Nikaido T, et al. Evaluation of experimental calcium-containing primer in adhesive system on micro-tensile bond strength and acid resistance[J]. Dent Mater J, 2019, 38(4): 565-572.
[22] Nikaido T, Takagaki T, Sato T, et al. Fluoride-relea-sing self-etch adhesives create thick ABRZ at the interface[J]. Biomed Res Int, 2021, 2021: 9731280.
[23] Aung SSMP, Takagaki T, Ko AK, et al. Adhesion durability of dual-cure resin cements and acid-base resistant zone formation on human dentin[J]. Dent Mater, 2019, 35(7): 945-952.
[24] Giannini M, Makishi P, Ayres AP, et al. Self-etch adhesive systems: a literature review[J]. Braz Dent J, 2015, 26(1): 3-10.
[25] Yang Y, Inoue G, Hosaka K, et al. The effect of a deproteinizing pretreatment on the bonding performance and acid resistance of a two-step self-etch adhesive on eroded dentin[J]. Oper Dent, 2024, 49(1): 65-75.
[26] Li N, Nikaido T, Takagaki T, et al. The role of functional monomers in bonding to enamel: acid-base resistant zone and bonding performance[J]. J Dent, 2010, 38(9): 722-730.
[27] Kumagai RY, Takagaki T, Sato T, et al. Resin cement/enamel interface: a morphological evaluation of the acid-base resistant zone, enamel etching pattern, and effect of thermocycling on the microshear bond strength[J]. J Adhes Dent, 2023, 25: 71-78.
[28] Sato T, Takagaki T, Ikeda M, et al. Effects of selective phosphoric acid etching on enamel using “no-wait” self-etching adhesives[J]. J Adhes Dent, 2018, 20(5): 407-415.
[29] Sato A, Sato T, Ikeda M, et al. Influence of different tooth etchants on bur-cut and uncut enamel[J]. Dent Mater J, 2023, 42(3): 311-318.
[30] Sato T, Takagaki T, Baba YT, et al. Effects of diffe-rent tooth conditioners on the bonding of universal self-etching adhesive to dentin[J]. J Adhes Dent, 2019, 21(1): 77-85.
[31] Nikaido T, Takagaki T, Sato T, et al. The concept of super enamel formation-relationship between chemical interaction and enamel acid-base resistant zone at the self-etch adhesive/enamel interface[J]. Dent Mater J, 2020, 39(4): 534-538.
[32] Nakamoto A, Sato T, Matsui N, et al. Effect of fluoride mouthrinse and fluoride concentration on bon-ding of a one-step self-etch adhesive to bovine root dentin[J]. J Oral Sci, 2019, 61(1): 125-132.
[33] Sato T, Nikaido T, Takagaki T, et al. Influence of primer contamination on the bonding interface of enamel pre-etched with phosphoric acid[J]. Dent Mater J, 2021, 40(5): 1086-1093.
[34] Kirihara M, Inoue G, Nikaido T, et al. Effect of fluoride concentration in adhesives on morphology of acid-base resistant zones[J]. Dent Mater J, 2013, 32(4): 578-584.
[35] Nikaido T, Ichikawa C, Li N, et al. Effect of functional monomers in all-in-one adhesive systems on formation of enamel/dentin acid-base resistant zone[J]. Dent Mater J, 2011, 30(5): 576-582.
[36] Aung SSMP, Takagaki T, Ikeda M, et al. Ultra-morphological studies on enamel-universal adhesive interface[J]. J Dent, 2021, 104: 103527.
[37] Yoshihara K, Nagaoka N, Nakamura A, et al. Nano-layering adds strength to the adhesive interface[J]. J Dent Res, 2021, 100(5): 515-521.
[1] 陈阿璇,戴雯玉,韩向龙. 应用于牙釉质的抗菌再矿化材料的研究进展[J]. 国际口腔医学杂志, 2025, 52(5): 606-613.
[2] 雷彬,陈柯. 牙本质发育不良Ⅰ型及其分型治疗[J]. 国际口腔医学杂志, 2022, 49(3): 332-336.
[3] 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203.
[4] 丁景瑜,田子璐,王惠敏,朱轩言,杨宇斌,朱松. 即刻牙本质封闭的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 121-124.
[5] 章善,沈树平,张舫,杨卫东. Er: YAG激光光子激活光声流技术对根管壁牙本质失水状况及牙根抗压强度的影响[J]. 国际口腔医学杂志, 2022, 49(1): 55-59.
[6] 何蓉,刘学军,周宇琨. 光子引导的光声流效应在根管荡洗中应用的系统评价[J]. 国际口腔医学杂志, 2021, 48(6): 644-655.
[7] 赵彬彬,仲维剑,马国武. 牙本质作为骨移植材料的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 82-89.
[8] 刘恩言,李明云. 茶多酚类化合物在牙本质粘接中应用的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 732-738.
[9] 张凯莹,房付春,吴补领. 非编码RNA在牙源性干细胞成牙本质向分化中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 540-545.
[10] 秦娇娇,焦珊,王成坤. Er:YAG和Nd:YAG激光对牙本质与瓷修复体粘接面粘接强度影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 361-366.
[11] 谭欣,于海洋. 模拟髓腔压力在牙本质粘接强度研究中的应用[J]. 国际口腔医学杂志, 2018, 45(6): 723-727.
[12] 陈燕活, 安少锋, 高燕. 硅酸钙类盖髓剂生物学性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 459-464.
[13] 廖文婷, 李彦. 半胱氨酸组织蛋白酶对牙本质粘接耐久性的影响[J]. 国际口腔医学杂志, 2017, 44(3): 340-343.
[14] 陈尽欢,孙建勋,陈新梅. 转化生长因子-β超家族成员在牙本质发生发育中的作用[J]. 国际口腔医学杂志, 2016, 43(4): 477-481.
[15] 周凤,赵玉鸣. 磨牙-切牙釉质矿化不全的研究进展[J]. 国际口腔医学杂志, 2016, 43(4): 456-461.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!