国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (6): 723-727.doi: 10.7518/gjkq.2018.06.017
摘要:
模拟髓腔压力为探索牙本质-粘接剂界面自然衰降过程提供了一条新途径。随着树脂充填、嵌体、全冠、桩核等修复形式的广泛应用,牙本质粘接也成为了这些修复形式成功的关键。然而,对于模拟髓腔压力下,牙本质粘接强度的变化及其机制的研究结论不尽相同。本文就模拟髓腔压力下,影响牙本质粘接强度的因素及模拟髓腔压力影响粘接强度的机制等研究领域进行综述,并对防治对策展开讨论。
中图分类号:
[1] |
Hashimoto M, Tay FR, Svizero NR , et al. The effects of common errors on sealing ability of total-etch adhesives[J]. Dent Mater, 2006,22(6):560-568.
doi: 10.1016/j.dental.2005.06.004 pmid: 16289724 |
[2] |
Bacchi A, Abuna G, Consani RL , et al. Effects of simulated pulpal pressure, mechanical and thermo-cycling challenge on the microtensile bond strength of resin luting cements[J]. Int J Adhes Adhes, 2015,60:69-74.
doi: 10.1016/j.ijadhadh.2015.03.009 |
[3] |
van Landuyt KL, de Munck J, Mine A , et al. Filler debonding & subhybrid-layer failures in self-etch adhesives[J]. J Dent Res, 2010,89(10):1045-1050.
doi: 10.1177/0022034510375285 |
[4] |
van Meerbeek B, Yoshihara K, Yoshida Y , et al. State of the art of self-etch adhesives[J]. Dent Mater, 2011,27(1):17-28.
doi: 10.1016/j.dental.2010.10.023 pmid: 21109301 |
[5] |
Pashley DH, Carvalho RM . Dentine permeability and dentine adhesion[J]. J Dent, 1997,25(5):355-372.
doi: 10.1016/S0300-5712(96)00057-7 pmid: 9241954 |
[6] |
Bacchi A, Abuna G, Babbar A , et al. Influence of 3- month simulated pulpal pressure on the microtensile bond strength of simplified resin luting systems[J]. J Adhes Dent, 2015,17(3):265-271.
doi: 10.3290/j.jad.a34414 pmid: 26159130 |
[7] |
Pereira PN, Sano H, Ogata M , et al. Effect of region and dentin perfusion on bond strengths of resin-modified glass ionomer cements[J]. J Dent, 2000,28(5):347-354.
doi: 10.1016/S0300-5712(00)00017-8 pmid: 10785301 |
[8] |
Perdigão J . Dentin bonding—variables related to the clinical situation and the substrate treatment[J]. Dent Mater, 2010,26(2):e24-e37.
doi: 10.1016/j.dental.2009.11.149 pmid: 20005565 |
[9] |
Tjäderhane L, Nascimento FD, Breschi L , et al. Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cys-teine cathepsins[J]. Dent Mater, 2013,29(1):116-135.
doi: 10.1016/j.dental.2012.08.004 pmid: 22901826 |
[10] |
Delaviz Y, Finer Y, Santerre JP . Biodegradation of resin composites and adhesives by oral bacteria and saliva: a rationale for new material designs that consider the clinical environment and treatment chal-lenges[J]. Dent Mater, 2014,30(1):16-32.
doi: 10.1016/j.dental.2013.08.201 pmid: 24113132 |
[11] |
Sartori N, Peruchi LD, Phark JH , et al. The influence of intrinsic water permeation on different dentin bon-ded interfaces formation[J]. J Dent, 2016,48:46-54.
doi: 10.1016/j.jdent.2016.03.005 pmid: 26976554 |
[12] |
Pucci CR, Gu LS, Zeng C , et al. Susceptibility of contemporary single-bottle self-etch dentine adhesives to intrinsic water permeation[J]. J Dent, 2017,66:52-61.
doi: 10.1016/j.jdent.2017.08.010 |
[13] | Hebling J, Castro FL, Costa CA . Adhesive perfor-mance of dentin bonding agents applied in vivo and in vitro. Effect of intrapulpal pressure and dentin depth[J]. J Biomed Mater Res B Appl Biomater, 2007,83(2):295-303. |
[14] |
Heyeraas KJ . Pulpal hemodynamics and interstitial fluid pressure: balance of transmicrovascular fluid transport[J]. J Endod, 1989,15(10):468-472.
doi: 10.1016/S0099-2399(89)80026-3 pmid: 2639938 |
[15] |
Sartori N, Peruchi LD, Phark JH , et al. Permeation of intrinsic water into ethanol- and water-saturated, monomer-infiltrated dentin bond interfaces[J]. Dent Mater, 2015,31(11):1385-1395.
doi: 10.1016/j.dental.2015.08.159 pmid: 26411647 |
[16] |
Feitosa V, Watson T, Vitti R , et al. Prolonged curing time reduces the effects of simulated pulpal pressure on the bond strength of one-step self-etch adhesives[J]. Oper Dent, 2013,38(5):545-554.
doi: 10.2341/12-180-L pmid: 23215642 |
[17] |
Tay FR, Pashley DH . Water treeing—a potential mechanism for degradation of dentin adhesives[J]. Am J Dent, 2003,16(1):6-12.
doi: 10.1007/s0701-002-1041-3 pmid: 12744405 |
[18] |
Silva TM, Gonçalves LL, Fonseca BM , et al. Influence of Nd: YAG laser on intrapulpal temperature and bond strength of human dentin under simulated pulpal pressure[J]. Lasers Med Sci, 2016,31(1):49-56.
doi: 10.1007/s10103-015-1827-1 pmid: 26510575 |
[19] |
Ciucchi B, Bouillaguet S, Holz J , et al. Dentinal fluid dynamics in human teeth, in vitro[J]. J Endod, 1995,21(4):191-194.
doi: 10.1016/S0099-2399(06)80564-9 pmid: 7673819 |
[20] |
Feitosa VP, Gotti VB, Grohmann CV , et al. Two methods to simulate intrapulpal pressure: effects upon bonding performance of self-etch adhesives[J]. Int Endod J, 2014,47(9):819-826.
doi: 10.1111/iej.12222 pmid: 24298904 |
[21] |
de Alexandre R, Santana V, Kasaz A , et al. Effect of long-term simulated pulpal pressure on the bond strength and nanoleakage of resin-luting agents with different bonding strategies[J]. Oper Dent, 2014,39(5):508-520.
doi: 10.2341/13-078 pmid: 24502755 |
[22] |
Prati C, Pashley DH, Montanari G . Hydrostatic intra-pulpal pressure and bond strength of bonding systems[J]. Dent Mater, 1991,7(1):54-58.
doi: 10.1016/0109-5641(91)90028-W pmid: 1901813 |
[23] |
Pioch T, Staehle HJ, Schneider H , et al. Effect of intrapulpal pressure simulation in vitro on shear bond strengths and hybrid layer formation[J]. Am J Dent, 2001,14(5):319-323.
doi: 10.1080/000163501750541200 pmid: 11803998 |
[24] |
Özok AR , Wu MK, de Gee AJ, et al. Effect of dentin perfusion on the sealing ability and microtensile bond strengths of a total-etch versus an all-in-one adhesive[J]. Dent Mater, 2004,20(5):479-486.
doi: 10.1016/j.dental.2003.07.004 pmid: 15081555 |
[25] |
Sauro S, Pashley DH, Montanari M , et al. Effect of simulated pulpal pressure on dentin permeability and adhesion of self-etch adhesives[J]. Dent Mater, 2007,23(6):705-713.
doi: 10.1016/j.dental.2006.06.010 pmid: 16904175 |
[26] |
Cardoso MV, Moretto SG, Carvalho RC , et al. In-fluence of intrapulpal pressure simulation on the bond strength of adhesive systems to dentin[J]. Braz Oral Res, 2008,22(2):170-175.
doi: 10.1590/S1806-83242008000200013 pmid: 18622488 |
[27] |
Feitosa VP, Leme AA, Sauro S , et al. Hydrolytic degradation of the resin-dentine interface induced by the simulated pulpal pressure, direct and indirect water ageing[J]. J Dent, 2012,40(12):1134-1143.
doi: 10.1016/j.jdent.2012.09.011 |
[28] |
Campos EA, Correr GM, Leonardi DP , et al. Chlor-hexidine diminishes the loss of bond strength over time under simulated pulpal pressure and thermo-mechanical stressing[J]. J Dent, 2009,37(2):108-114.
doi: 10.1016/j.jdent.2008.10.003 pmid: 19022552 |
[29] |
Nakajima M, Hosaka K, Yamauti M , et al. Bonding durability of a self-etching primer system to normal and caries-affected dentin under hydrostatic pulpal pressure in vitro[J]. Am J Dent, 2006,19(3):147-150.
doi: 10.1080/00016350600573191 pmid: 16838477 |
[30] |
Hosaka K, Nakajima M, Takahashi M , et al. Re-lationship between mechanical properties of one-step self-etch adhesives and water sorption[J]. Dent Mater, 2010,26(4):360-367.
doi: 10.1016/j.dental.2009.12.007 pmid: 20053432 |
[31] |
Manso AP, Bedran-Russo AK, Suh B , et al. Me-chanical stability of adhesives under water storage[J]. Dent Mater, 2009,25(6):744-749.
doi: 10.1016/j.dental.2008.12.006 pmid: 19200591 |
[32] |
Kim RJ, Choi NS, Ferracane J , et al. Acoustic emis-sion analysis of the effect of simulated pulpal pre-ssure and cavity type on the tooth-composite inter-facial de-bonding[J]. Dent Mater, 2014,30(8):876-883.
doi: 10.1016/j.dental.2014.05.027 |
[33] | Feitosa VP, Correr AB, Correr-Sobrinho L , et al. Effect of a new method to simulate pulpal pressure on bond strength and nanoleakage of dental adhe-sives to dentin[J]. J Adhes Dent, 2012,14(6):517-524. |
[34] |
Augustin C, Paul SJ, Lüthy H , et al. Perfusing den-tine with horse serum or physiologic saline: its effect on adhesion of dentine bonding agents[J]. J Oral Rehabil, 1998,25(8):596-602.
doi: 10.1046/j.1365-2842.1998.00276.x pmid: 9781862 |
[35] |
Van Landuyt KL, Snauwaert J, De Munck J , et al. Origin of interfacial droplets with one-step adhesives[J]. J Dent Res, 2007,86(8):739-744.
doi: 10.1177/154405910708600810 pmid: 17652202 |
[36] |
Sauro S, Mannocci F, Toledano M , et al. Influence of the hydrostatic pulpal pressure on droplets forma-tion in current etch-and-rinse and self-etch adhesives: a video rate/TSM microscopy and fluid filtration study[J]. Dent Mater, 2009,25(11):1392-1402.
doi: 10.1016/j.dental.2009.06.010 |
[37] |
Hosaka K, Nakajima M, Monticelli F , et al. Influence of hydrostatic pulpal pressure on the microtensile bond strength of all-in-one self-etching adhesives[J]. J Adhes Dent, 2007,9(5):437-442.
doi: 10.1016/j.ijom.2007.01.025 pmid: 18297824 |
[38] |
de Andrade e Silva SM, Carrilho MR, Marquezini Junior L , et al. Effect of an additional hydrophilic versus hydrophobic coat on the quality of dentinal sealing provided by two-step etch-and-rinse adhe-sives[J]. J Appl Oral Sci, 2009,17(3):184-189.
doi: 10.1590/S1678-77572009000300010 pmid: 4399529 |
[39] |
Santana VB, de Alexandre RS, Rodrigues JA , et al. Effects of immediate dentin sealing and pulpal pre-ssure on resin cement bond strength and nanoleakage[J]. Oper Dent, 2016,41(2):189-199.
doi: 10.2341/15-150-L pmid: 26449591 |
[1] | 雷彬,陈柯. 牙本质发育不良Ⅰ型及其分型治疗[J]. 国际口腔医学杂志, 2022, 49(3): 332-336. |
[2] | 李嫣斐,张新春. 牙本质作为骨修复材料的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 197-203. |
[3] | 丁景瑜,田子璐,王惠敏,朱轩言,杨宇斌,朱松. 即刻牙本质封闭的研究进展[J]. 国际口腔医学杂志, 2022, 49(1): 121-124. |
[4] | 章善,沈树平,张舫,杨卫东. Er: YAG激光光子激活光声流技术对根管壁牙本质失水状况及牙根抗压强度的影响[J]. 国际口腔医学杂志, 2022, 49(1): 55-59. |
[5] | 何蓉,刘学军,周宇琨. 光子引导的光声流效应在根管荡洗中应用的系统评价[J]. 国际口腔医学杂志, 2021, 48(6): 644-655. |
[6] | 赵彬彬,仲维剑,马国武. 牙本质作为骨移植材料的研究进展[J]. 国际口腔医学杂志, 2021, 48(1): 82-89. |
[7] | 刘恩言,李明云. 茶多酚类化合物在牙本质粘接中应用的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 732-738. |
[8] | 张凯莹,房付春,吴补领. 非编码RNA在牙源性干细胞成牙本质向分化中作用的研究进展[J]. 国际口腔医学杂志, 2019, 46(5): 540-545. |
[9] | 秦娇娇,焦珊,王成坤. Er:YAG和Nd:YAG激光对牙本质与瓷修复体粘接面粘接强度影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 361-366. |
[10] | 陈燕活, 安少锋, 高燕. 硅酸钙类盖髓剂生物学性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 459-464. |
[11] | 廖文婷, 李彦. 半胱氨酸组织蛋白酶对牙本质粘接耐久性的影响[J]. 国际口腔医学杂志, 2017, 44(3): 340-343. |
[12] | 霍欢 殷家悦 艾红军. 树脂粘接剂在全瓷修复中的应用进展[J]. 国际口腔医学杂志, 2016, 43(5): 554-559. |
[13] | 陈尽欢,孙建勋,陈新梅. 转化生长因子-β超家族成员在牙本质发生发育中的作用[J]. 国际口腔医学杂志, 2016, 43(4): 477-481. |
[14] | 高原,徐佳蕾,杨倩,黄定明,周学东. 根管内分离器械的处理评估与取出策略[J]. 国际口腔医学杂志, 2016, 43(3): 249-259. |
[15] | 熊航 谢志刚 鲍济波. 脱矿牙本质基质的基本性能及制备[J]. 国际口腔医学杂志, 2016, 43(1): 90-. |
|