国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (2): 210-216.doi: 10.7518/gjkq.2025029
Jiaxin Yi1(),Jianchun Liao2,Yi Huang3,Wei Fei4,Jun Guo3(
)
摘要:
目的 探究金担子素A(AbA)对白色念珠菌的抑菌活性及潜在作用机制,评估其未来作为新型抗真菌药物的应用潜力。 方法 首先测定了AbA的最低抑菌浓度(MIC),并探究其对菌丝形成及细胞壁完整性的影响。随后,利用转录组测序探讨了白色念珠菌在AbA作用下的响应机制。 结果 体外实验结果显示AbA的MIC值为0.062 5 μg/mL,并能显著抑制白色念珠菌的形态转换、破坏其细胞壁完整性。通过转录组测序共筛选出700个差异表达基因,其中上调基因465个,下调基因235个。京都基因(GO)富集分析结果显示:细胞外周、细胞质膜、真菌型细胞壁及氧化还原酶活性相关的通路最为富集。基因组百科全书(KEGG)富集分析结果表明代谢途径通路的富集程度最高。 结论 AbA对白色念珠菌具有较强的抑制作用,其潜在抗菌机制可能包括抑制菌丝形成、破坏细胞质膜、降低免疫逃逸能力以及抑制代谢活动。明确以上机制能够为制定更有效的抗真菌治疗策略提供重要理论依据。
中图分类号:
1 | Stasiewicz M, Karpiński TM. The oral microbiota and its role in carcinogenesis[J]. Semin Cancer Biol, 2022, 86(Pt 3): 633-642. |
2 | Lu H, Hong T, Jiang YY, et al. Candidiasis: from cutaneous to systemic, new perspectives of potential targets and therapeutic strategies[J]. Adv Drug Deliv Rev, 2023, 199: 114960. |
3 | Ponde NO, Lortal L, Ramage G, et al. Candida albicans biofilms and polymicrobial interactions[J]. Crit Rev Microbiol, 2021, 47(1): 91-111. |
4 | Lohse MB, Gulati M, Johnson AD, et al. Development and regulation of single- and multi-species Candida albicans biofilms[J]. Nat Rev Microbiol, 2018, 16(1): 19-31. |
5 | Fan FM, Liu Y, Liu YQ, et al. Candida albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies[J]. Int J Antimicrob Agents, 2022, 60(5/6): 106673. |
6 | Lee YJ, Puumala E, Robbins N, et al. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond[J]. Chem Rev, 2021, 121(6): 3390-3411. |
7 | 骆阳, 徐兴伟, 嵇武. 白色念珠菌致病机制研究进展[J]. 山东医药, 2023, 63(29): 111-114. |
Luo Y, Xu XW, Ji W. Research progress on pathogenic mechanism of Candida albicans [J]. Shandong Med J, 2023, 63(29): 111-114. | |
8 | Zida A, Bamba S, Yacouba A, et al. Anti-Candida albicans natural products, sources of new antifungal drugs: a review[J]. J Mycol Med, 2017, 27(1): 1-19. |
9 | Sugimoto Y, Sakoh H, Yamada K. IPC synthase as a useful target for antifungal drugs[J]. Curr Drug Targets Infect Disord, 2004, 4(4): 311-322. |
10 | Taş N, de Jong AE, Li YM, et al. Metagenomic tools in microbial ecology research[J]. Curr Opin Biotechnol, 2021, 67: 184-191. |
11 | Reuter JA, Spacek DV, Snyder MP. High-throughput sequencing technologies[J]. Mol Cell, 2015, 58(4): 586-597. |
12 | Brauner A, Fridman O, Gefen O, et al. Distingui-shing between resistance, tolerance and persistence to antibiotic treatment[J]. Nat Rev Microbiol, 2016, 14(5): 320-330. |
13 | Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, et al. Candida albicans biofilm growth and dispersal: contributions to pathogenesis[J]. Curr Opin Microbiol, 2019, 52: 1-6. |
14 | Odds FC. Pathogenesis of candida infections[J]. J Am Acad Dermatol, 1994, 31(3 Pt 2): S2-S5. |
15 | Martin R, Wächtler B, Schaller M, et al. Host-pathogen interactions and virulence-associated genes du-ring Candida albicans oral infections[J]. Int J Med Microbiol, 2011, 301(5): 417-422. |
16 | Arita GS, Faria DR, Capoci IRG, et al. Cell wall associated proteins involved in filamentation with impact on the virulence of Candida albicans [J]. Microbiol Res, 2022, 258: 126996. |
17 | Fan Y, He H, Dong Y, et al. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans [J]. Mycopa-thologia, 2013, 176(5/6): 329-335. |
18 | Kumar D, Kumar A. Molecular determinants invo-lved in Candida albicans biofilm formation and re-gulation[J]. Mol Biotechnol, 2024, 66(7): 1640-1659. |
19 | Zheng LJ, Xu Y, Dong YB, et al. Chromosome 1 trisomy confers resistance to aureobasidin A in Candida albicans [J]. Front Microbiol, 2023, 14: 1128160. |
20 | Rao KH, Paul S, Natarajan K, et al. N-acetylgluco-samine kinase, Hxk1 is a multifaceted metabolic enzyme in model pathogenic yeast Candida albicans [J]. Microbiol Res, 2022, 263: 127146. |
21 | Hoyer LL. The ALS gene family of Candida albicans [J]. Trends Microbiol, 2001, 9(4): 176-180. |
22 | Sui X, Yan L, Jiang YY. The vaccines and antibo-dies associated with Als3p for treatment of Candida albicans infections[J]. Vaccine, 2017, 35(43): 5786-5793. |
23 | 周文婷, 李琛妍, 黄凯黎, 等. 白色念珠菌菌丝形成与黏附侵袭致病的调控机制研究[J]. 右江民族医学院学报, 2022, 44(5): 744-748. |
Zhou WT, Li CY, Huang KL, et al. Study on the re-gulation mechanism of Candida albicans mycelia formation and adhesion invasion[J]. J Youjiang Med Univ Natl, 2022, 44(5): 744-748. | |
24 | Denny P, Feuermann M, Hill DP, et al. Exploring autophagy with gene ontology[J]. Autophagy, 2018, 14(3): 419-436. |
25 | Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional cha-racterization of genome and metagenome sequences[J]. J Mol Biol, 2016, 428(4): 726-731. |
26 | Yang T, Hui RT, Nouws J, et al. Untargeted metabolomics analysis of esophageal squamous cell cancer progression[J]. J Transl Med, 2022, 20(1): 127. |
27 | Padder SA, Ramzan A, Tahir I, et al. Metabolic fle-xibility and extensive adaptability governing multiple drug resistance and enhanced virulence in Candida albicans [J]. Crit Rev Microbiol, 2022, 48(1): 1-20. |
[1] | 杨偲睿,任彪,彭显,徐欣. 药物联用逆转白色念珠菌唑类耐药机制的研究进展[J]. 国际口腔医学杂志, 2022, 49(5): 511-520. |
[2] | 李姗姗,杨芳. 变异链球菌与白色念珠菌相互作用在龋病发生中的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 392-396. |
[3] | 刘千溪,吴佳益,任彪,黄睿洁. 粪肠球菌与口腔微生物相互作用的研究进展[J]. 国际口腔医学杂志, 2022, 49(3): 290-295. |
[4] | 熊开新,邹玲. 白色念珠菌、黏性放线菌与根面龋相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(2): 187-191. |
[5] | 李帆,张利娟,谭凯璇,张颖,卢洁,李姗姗,杨芳. 基于重水拉曼技术的氯己定对白色念珠菌抑菌效能的研究[J]. 国际口腔医学杂志, 2021, 48(1): 35-40. |
[6] | 文书琼,郭君怡,戴文晓,王迪侃,王智. 白色念珠菌影响口腔黏膜癌变的机制进展[J]. 国际口腔医学杂志, 2019, 46(6): 705-710. |
[7] | 杜倩,任彪,周学东,徐欣. 根面龋微生态的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 326-332. |
[8] | 郝一龙,周瑜,陈谦明. 正中菱形舌炎发病危险因素的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 333-338. |
[9] | 林靖雯,陈谦明. 富组蛋白抗白色念珠菌作用的研究进展[J]. 国际口腔医学杂志, 2005, 32(04): 294-296. |
[10] | 秦伟,林正梅. 感染根管内白色念珠菌的检测和治疗[J]. 国际口腔医学杂志, 2005, 32(03): 236-238. |
[11] | 索万奎. 义齿软衬材料表面白色念珠菌粘附的研究进展[J]. 国际口腔医学杂志, 2004, 31(S1): -. |
[12] | 刘为国,黄敏. 口腔中影响白色念珠菌粘附的因素[J]. 国际口腔医学杂志, 2002, 29(04): -. |
[13] | 聂敏海,钟利. 都柏林念珠菌的特征和鉴定[J]. 国际口腔医学杂志, 2002, 29(01): -. |
|