国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (3): 281-295.doi: 10.7518/gjkq.2025060
• 专家笔谈 •
摘要:
氧化锆种植体因其颜色类似天然牙齿,美学效果优良且具有适当的机械性能以及理想的生物相容性,可以减少种植体周围的炎症反应,成为替代钛种植体的可能选择。然而,与钛相比,未经处理的氧化锆表面具有生物惰性,导致其骨整合有限。由于表面特性在蛋白质的吸附、黏附、增殖和成骨相关细胞的分化中起着至关重要的作用,因此许多表面修饰被用于增强氧化锆的表面生物活性。本文综述了氧化锆种植体的各种表面修饰及其对骨整合的影响,并总结了几种表面改性方法的优缺点。
中图分类号:
1 | Sivaraman K, Chopra A, Narayan AI, et al. Is zirconia a viable alternative to titanium for oral implant? A critical review[J]. J Prosthodont Res, 2018, 62(2): 121-133. |
2 | Manicone PF, Rossi Iommetti P, Raffaelli L. An overview of zirconia ceramics: basic properties and clinical applications[J]. J Dent, 2007, 35(11): 819-826. |
3 | Cionca N, Hashim D, Mombelli A. Zirconia dental implants: where are we now, and where are we hea-ding[J]. Periodontol 2000, 2017, 73(1): 241-258. |
4 | Piconi C, Maccauro G. Zirconia as a ceramic biomaterial[J]. Biomaterials, 1999, 20(1): 1-25. |
5 | Yin L, Nakanishi Y, Alao AR, et al. A review of engineered zirconia surfaces in biomedical applications[J]. Procedia CIRP, 2017, 65: 284-290. |
6 | Bosshardt DD, Chappuis V, Buser D. Osseointegration of titanium, titanium alloy and zirconia dental implants: current knowledge and open questions[J]. Periodontol 2000, 2017, 73(1): 22-40. |
7 | Pieralli S, Kohal RJ, Lopez Hernandez E, et al. Osseointegration of zirconia dental implants in animal investigations: a systematic review and meta-analysis[J]. Dent Mater, 2018, 34(2): 171-182. |
8 | Hafezeqoran A, Koodaryan R. Effect of zirconia dental implant surfaces on bone integration: a systematic review and meta-analysis[J]. Biomed Res Int, 2017, 2017: 9246721. |
9 | Depprich R, Zipprich H, Ommerborn M, et al. Osseointegration of zirconia implants compared with titanium: an in vivo study[J]. Head Face Med, 2008, 4: 30. |
10 | Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I, et al. In vitro biofilm formation on titanium and zirconia implant surfaces[J]. J Periodontol, 2017, 88(3): 298-307. |
11 | Roehling S, Schlegel KA, Woelfler H, et al. Zirconia compared to titanium dental implants in preclinical studies-a systematic review and meta-analysis[J]. Clin Oral Implants Res, 2019, 30(5): 365-395. |
12 | Preshaw P. Summary of: implant surface characteristics and their effect on osseointegration[J]. Br Dent J, 2015, 218(5): 292-293. |
13 | Fukuda N, Kanazawa M, Tsuru K, et al. Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia[J]. Sci Rep, 2018, 8(1): 16887. |
14 | Niu W, Shi B, Zhou J, et al. Influence of implant surface topography on bone-regenerative potential and mechanical retention in the human maxilla and mandible[J]. Am J Dent, 2014, 27(3): 171-176. |
15 | Beutner R, Michael J, Schwenzer B, et al. Biological nano-functionalization of titanium-based biomaterial surfaces: a flexible toolbox[J]. J R Soc Interface, 2010, 7(): S93-S105. |
16 | Wang CC, Hu HX, Li ZP, et al. Enhanced osseointegration of titanium alloy implants with laser microgrooved surfaces and graphene oxide coating[J]. ACS Appl Mater Interfaces, 2019, 11(43): 39470-39483. |
17 | Lukaszewska-Kuska M, Wirstlein P, Majchrowski R, et al. Osteoblastic cell behaviour on modified titanium surfaces[J]. Micron, 2018, 105: 55-63. |
18 | Shin D, Blanchard SB, Ito M, et al. Peripheral quantitative computer tomographic, histomorphometric, and removal torque analyses of two different non-coated implants in a rabbit model[J]. Clin Oral Implants Res, 2011, 22(3): 242-250. |
19 | Möller B, Terheyden H, Açil Y, et al. A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study[J]. Int J Oral Maxillofac Surg, 2012, 41(5): 638-645. |
20 | Yamada M, Ueno T, Minamikawa H, et al. Early-stage osseointegration capability of a submicrofeatured titanium surface created by microroughening and anodic oxidation[J]. Clin Oral Implants Res, 2013, 24(9): 991-1001. |
21 | Mueller CK, Solcher P, Peisker A, et al. Analysis of the influence of the macro- and microstructure of dental zirconium implants on osseointegration: a minipig study[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2013, 116(1): e1-8. |
22 | Zhang Y, Lawn BR, Malament KA, et al. Damage accumulation and fatigue life of particle-abraded ceramics[J]. Int J Prosthodont, 2006, 19(5): 442-448. |
23 | Finger C, Stiesch M, Eisenburger M, et al. Effect of sandblasting on the surface roughness and residual stress of 3Y-TZP (zirconia)[J]. SN Appl Sci, 2020, 2(10): 1700. |
24 | Zhang J, Xie YN, Zuo J, et al. Cell responses to titanium treated by a sandblast-free method for implant applications[J]. Mater Sci Eng C, 2017, 78: 1187-1194. |
25 | Kohal RJ, Weng D, Bächle M, et al. Loaded custom-made zirconia and titanium implants show similar osseointegration: an animal experiment[J]. J Perio-dontol, 2004, 75(9): 1262-1268. |
26 | Schliephake H, Hefti T, Schlottig F, et al. Mechanical anchorage and peri-implant bone formation of surface-modified zirconia in minipigs[J]. J Clin Pe-riodontol, 2010, 37(9): 818-828. |
27 | Hoffmann O, Angelov N, Zafiropoulos GG, et al. Osseointegration of zirconia implants with different surface characteristics: an evaluation in rabbits[J]. Int J Oral Maxillofac Implants, 2012, 27(2): 352-358. |
28 | Bacchelli B, Giavaresi G, Franchi M, et al. Influen-ce of a zirconia sandblasting treated surface on peri-implant bone healing: an experimental study in sheep[J]. Acta Biomater, 2009, 5(6): 2246-2257. |
29 | Nothdurft FP, Fontana D, Ruppenthal S, et al. Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: a compa-rison of materials and surface topographies[J]. Clin Implant Dent Relat Res, 2015, 17(6): 1237-1249. |
30 | Lee J, Sieweke JH, Rodriguez NA, et al. Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits[J]. J Clin Periodontol, 2009, 36(7): 610-617. |
31 | Oh GJ, Yoon JH, Vu VT, et al. Surface characteristics of bioactive glass-infiltrated zirconia with diffe-rent hydrofluoric acid etching conditions[J]. J Nano-sci Nanotechnol, 2017, 17(4): 1645-1648. |
32 | Sriamporn T, Thamrongananskul N, Busabok C, et al. Dental zirconia can be etched by hydrofluoric a-cid[J]. Dent Mater J, 2014, 33(1): 79-85. |
33 | Hotchkiss KM, Ayad NB, Hyzy SL, et al. Dental implant surface chemistry and energy alter macrophage activation in vitro [J]. Clin Oral Implants Res, 2017, 28(4): 414-423. |
34 | Monjo M, Lamolle SF, Lyngstadaas SP, et al. In vivo expression of osteogenic markers and bone mi-neral density at the surface of fluoride-modified titanium implants[J]. Biomaterials, 2008, 29(28): 3771-3780. |
35 | Lamolle SF, Monjo M, Lyngstadaas SP, et al. Tita-nium implant surface modification by cathodic reduction in hydrofluoric acid: surface characterization and in vivo performance[J]. J Biomed Mater Res A, 2009, 88(3): 581-588. |
36 | Hung KY, Lin YC, Feng HP. The effects of acid etching on the nanomorphological surface characte-ristics and activation energy of titanium medical materials[J]. Materials (Basel), 2017, 10(10): 1164. |
37 | Monje A, González-García R, Fernández-Calderón MC, et al. Surface topographical changes of a fai-ling acid-etched long-term in function retrieved dental implant[J]. J Oral Implantol, 2016, 42(1): 12-16. |
38 | Giner L, Mercadé M, Torrent S, et al. Double acid etching treatment of dental implants for enhanced biological properties[J]. J Appl Biomater Funct Mater, 2018, 16(2): 83-89. |
39 | Zahran R, Rosales Leal JI, Rodríguez Valverde MA, et al. Effect of hydrofluoric acid etching time on titanium topography, chemistry, wettability, and cell adhesion[J]. PLoS One, 2016, 11(11): e0165296. |
40 | Kuo TF, Lu HC, Tseng CF, et al. Evaluation of osseointegration in titanium and zirconia-based dental implants with surface modification in a miniature pig model[J]. J Med Biol Eng, 2017, 37(3): 313-320. |
41 | Scarano A, Piattelli A, Quaranta A, et al. Bone response to two dental implants with different sandblasted/acid-etched implant surfaces: a histological and histomorphometrical study in rabbits[J]. Bio-med Res Int, 2017, 2017: 8724951. |
42 | Feng F, Wu YL, Xin HT, et al. Surface characteristics and biocompatibility of ultrafine-grain Ti after sandblasting and acid etching for dental implants[J]. ACS Biomater Sci Eng, 2019, 5(10): 5107-5115. |
43 | Xie HF, Cheng Y, Chen Y, et al. Improvement in the bonding of Y-TZP by room-temperature ultrasonic HF etching[J]. J Adhes Dent, 2017, 19(5): 425-433. |
44 | Robles-Ruíz JJ, Arana-Chavez VE, Ciamponi AL, et al. Effects of sandblasting before orthophosphoric acid etching on lingual enamel: in-vitro roughness assessment[J]. Am J Orthod Dentofacial Orthop, 2015, 147(4 ): S76-S81. |
45 | Mehta AS, Evans CA, Viana G, et al. Bonding of metal orthodontic attachments to sandblasted porcelain and zirconia surfaces[J]. Biomed Res Int, 2016, 2016: 5762785. |
46 | Hirano T, Sasaki H, Honma S, et al. Proliferation and osteogenic differentiation of human mesenchymal stem cells on zirconia and titanium with diffe-rent surface topography[J]. Dent Mater J, 2015, 34(6): 872-880. |
47 | Vieira P, Mowery J, Eisenback JD, et al. Cellular and transcriptional responses of resistant and susceptible cultivars of alfalfa to the root lesion nematode, Pratylenchus penetrans [J]. Front Plant Sci, 2019, 10: 971. |
48 | Liñares A, Grize L, Muñoz F, et al. Histological assessment of hard and soft tissues surrounding a no-vel ceramic implant: a pilot study in the minipig[J]. J Clin Periodontol, 2016, 43(6): 538-546. |
49 | Iinuma Y, Hirota M, Hayakawa T, et al. Surrounding tissue response to surface-treated zirconia implants[J]. Materials (Basel), 2019, 13(1): 30. |
50 | Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Selective infiltration-etching technique for a strong and durable bond of resin cements to zirconia-based materials[J]. J Prosthet Dent, 2007, 98(5): 379-388. |
51 | Abu Ruja M, De Souza GM, Finer Y. Ultrashort-pulse laser as a surface treatment for bonding between zirconia and resin cement[J]. Dent Mater, 2019, 35(11): 1545-1556. |
52 | Aboushelib MN, Osman E, Jansen I, et al. Influence of a nanoporous zirconia implant surface of on cell viability of human osteoblasts[J]. J Prosthodont, 2013, 22(3): 190-195. |
53 | Ponmozhi J, Moreira JR, Mergulhão FJ, et al. Fabrication and hydrodynamic characterization of a microfluidic device for cell adhesion tests in polymeric surfaces[J]. Micromachines (Basel), 2019, 10(5): 303. |
54 | Tanış MÇ, Akay C, Şen M. Effect of selective infiltration etching on the bond strength between zirconia and resin luting agents[J]. J Esthet Restor Dent, 2019, 31(3): 257-262. |
55 | Gaggl A, Schultes G, Müller WD, et al. Scanning electron microscopical analysis of laser-treated titanium implant surfaces: a comparative study[J]. Biomaterials, 2000, 21(10): 1067-1073. |
56 | Güçlü ZA, Dönmez N, Tüzüner T, et al. The impact of Er: YAG laser enamel conditioning on the microleakage of a new hydrophilic sealant: ultraSeal XT hydro[J]. Lasers Med Sci, 2016, 31(4): 705-711. |
57 | Calvo-Guirado JL, Aguilar Salvatierra A, Gargallo-Albiol J, et al. Zirconia with laser-modified microgrooved surface vs. titanium implants covered with melatonin stimulates bone formation. Experimental study in tibia rabbits[J]. Clin Oral Implants Res, 2015, 26(12): 1421-1429. |
58 | Kurella A, Dahotre NB. Review paper: surface mo-dification for bioimplants: the role of laser surface engineering[J]. J Biomater Appl, 2005, 20(1): 5-50. |
59 | Calvo-Guirado JL, Aguilar-Salvatierra A, Gomez-Moreno G, et al. Histological, radiological and histomorphometric evaluation of immediate vs. non-immediate loading of a zirconia implant with surface treatment in a dog model[J]. Clin Oral Implants Res, 2014, 25(7): 826-830. |
60 | Delgado-Ruiz RA, Calvo-Guirado JL, Abboud M, et al. Histologic and histomorphometric behavior of microgrooved zirconia dental implants with imme-diate loading[J]. Clin Implant Dent Relat Res, 2014, 16(6): 856-872. |
61 | Kasraei S, Rezaei-Soufi L, Heidari B, et al. Bond strength of resin cement to CO2 and Er: YAG laser-treated zirconia ceramic[J]. Restor Dent Endod, 2014, 39(4): 296-302. |
62 | Okutan Y, Kandemir B, Gundogdu Y, et al. Combined application of femtosecond laser and air-abrasion protocols to monolithic zirconia at different sintering stages: effects on surface roughness and resin bond strength[J]. J Biomed Mater Res B Appl Biomater, 2021, 109(4): 596-605. |
63 | Romanos GE, Gutknecht N, Dieter S, et al. Laser wavelengths and oral implantology[J]. Lasers Med Sci, 2009, 24(6): 961-970. |
64 | Yasuno K, Kakura K, Taniguchi Y, et al. Zirconia implants with laser surface treatment: peri-implant bone response and enhancement of osseointegration[J]. J Hard Tissue Biol, 2014, 23(1): 93-100. |
65 | Delgado-Ruiz RA, Abboud M, Romanos G, et al. Peri-implant bone organization surrounding zirconia-microgrooved surfaces circularly polarized light and confocal laser scanning microscopy study[J]. Clin Oral Implants Res, 2015, 26(11): 1328-1337. |
66 | Taniguchi Y, Kakura K, Yamamoto K, et al. Accele-rated osteogenic differentiation and bone formation on zirconia with surface grooves created with fiber laser irradiation[J]. Clin Implant Dent Relat Res, 2016, 18(5): 883-894. |
67 | Scatolin RS, Alonso-Filho FL, Galo R, et al. CO₂ laser emission modes to control enamel erosion[J]. Microsc Res Tech, 2015, 78(8): 654-659. |
68 | Hao L, Lawrence J, Chian KS. Osteoblast cell adhesion on a laser modified zirconia based bioceramic[J]. J Mater Sci Mater Med, 2005, 16(8): 719-726. |
69 | Park JH, Heo SJ, Koak JY, et al. Effects of laser irradiation on machined and anodized titanium disks[J]. Int J Oral Maxillofac Implants, 2012, 27(2): 265-272. |
70 | Hao L, Lawrence J, Chian KS. Effects of CO2 laser irradiation on the surface properties of magnesia-partially stabilised zirconia (MgO-PSZ) bioceramic and the subsequent improvements in human osteoblast cell adhesion[J]. J Biomater Appl, 2004, 19(2): 81-105. |
71 | Di Matteo F, Bettin P, Fiori M, et al. Nd: Yag laser goniopuncture for deep sclerectomy: efficacy and outcomes[J]. Graefes Arch Clin Exp Ophthalmol, 2016, 254(3): 535-539. |
72 | Beketova A, Poulakis N, Bakopoulou A, et al. Indu-cing bioactivity of dental ceramic/bioactive glass composites by Nd: YAG laser[J]. Dent Mater, 2016, 32(11): e284-e296. |
73 | Safi IN, Ali Hussein BM, Al-Shammari AM. Testing and characterization of sintered β‑tricalcium phosphate coat upon zirconia dental implant using Nd: YAG laser[J]. J Laser Appl, 2019, 31(3): 032002. |
74 | Kakura K, Yasuno K, Taniguchi Y, et al. Zirconia implant with rough surface produced by YAG laser treatment: evaluation of histomorphology and streng-th of osseointegration[J]. J Hard Tissue Biol, 2014, 23(1): 77-82. |
75 | Sugioka K, Xu J, Wu D, et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass[J]. Lab Chip, 2014, 14(18): 3447-3458. |
76 | Nadeem D, Sjostrom T, Wilkinson A, et al. Embos-sing of micropatterned ceramics and their cellular response[J]. J Biomed Mater Res A, 2013, 101(11): 3247-3255. |
77 | Stanciuc AM, Flamant Q, Sprecher CM, et al. Femtosecond laser multi-patterning of zirconia for scree-ning of cell-surface interactions[J]. J Eur Ceram Soc, 2018, 38(3): 939-948. |
78 | Carvalho A, Cangueiro L, Oliveira V, et al. Femtosecond laser microstructured alumina toughened zirconia: a new strategy to improve osteogenic diffe-rentiation of hMSCs[J]. Appl Surf Sci, 2018, 435: 1237-1245. |
79 | Stübinger S, Homann F, Etter C, et al. Effect of Er: YAG, CO2 and diode laser irradiation on surface properties of zirconia endosseous dental implants[J]. Lasers Surg Med, 2008, 40(3): 223-228. |
80 | Delgado-Ruíz RA, Calvo-Guirado JL, Moreno P, et al. Femtosecond laser microstructuring of zirconia dental implants[J]. J Biomed Mater Res B Appl Biomater, 2011, 96(1): 91-100. |
81 | Zhang WJ, Huang YH, Chen YL, et al. Amphiphilic tetraphenylethene-based pyridinium salt for selective cell-membrane imaging and room-light-induced special reactive oxygen species generation[J]. ACS Appl Mater Interfaces, 2019, 11(11): 10567-10577. |
82 | Aita H, Hori N, Takeuchi M, et al. The effect of ultraviolet functionalization of titanium on integration with bone[J]. Biomaterials, 2009, 30(6): 1015-1025. |
83 | Tuna T, Wein M, Altmann B, et al. Effect of ultra-violet photofunctionalisation on the cell attractiveness of zirconia implant materials[J]. Eur Cell Mater, 2015, 29: 82-96. |
84 | Brezavšček M, Fawzy A, Bächle M, et al. The effect of UV treatment on the osteoconductive capacity of zirconia-based materials[J]. Materials (Basel), 2016, 9(12): 958. |
85 | Altmann B, Kohal RJ, Steinberg T, et al. Distinct cell functions of osteoblasts on UV-functionalized titanium- and zirconia-based implant materials are modulated by surface topography[J]. Tissue Eng Part C Methods, 2013, 19(11): 850-863. |
86 | Tuna T, Wein M, Swain M, et al. Influence of ultraviolet photofunctionalization on the surface characteristics of zirconia-based dental implant materials[J]. Dent Mater, 2015, 31(2): e14-24. |
87 | Att W, Takeuchi M, Suzuki T, et al. Enhanced osteoblast function on ultraviolet light-treated zirconia[J]. Biomaterials, 2009, 30(7): 1273-1280. |
88 | Roy M, Pompella A, Kubacki J, et al. Photofunctio-nalization of dental zirconia oxide: surface modification to improve bio-integration preserving crystal stability[J]. Colloids Surf B Biointerfaces, 2017, 156: 194-202. |
89 | Whitesides GM, Grzybowski B. Self-assembly at all scales[J]. Science, 2002, 295(5564): 2418-2421. |
90 | Ansari HM, Dixit V, Zimmerman LB, et al. Self assembly of nanoislands on YSZ-(001) surface: a mechanistic approach toward a robust process[J]. Nano Lett, 2013, 13(5): 2116-2121. |
91 | Rim KT, Koo KH, Park JS. Toxicological evaluations of rare earths and their health impacts to wor-kers: a literature review[J]. Saf Health Work, 2013, 4(1): 12-26. |
92 | Hanawa T. A comprehensive review of techniques for biofunctionalization of titanium[J]. J Periodontal Implant Sci, 2011, 41(6): 263-272. |
93 | Khatayevich D, Gungormus M, Yazici H, et al. Biofunctionalization of materials for implants using engineered peptides[J]. Acta Biomater, 2010, 6(12): 4634-4641. |
94 | Chen X, Sevilla P, Aparicio C. Surface biofunctio-nalization by covalent co-immobilization of oligopeptides[J]. Colloids Surf B Biointerfaces, 2013, 107: 189-197. |
95 | Namavar F, Rubinstein A, Sabirianov R, et al. Engineered nanostructured coatings for enhanced protein adsorption and cell growth[J]. MRS Proc, 2013, 1418: 119-125. |
96 | Kemker I, Feiner RC, Müller KM, et al. Size-dependent cellular uptake of RGD peptides[J]. Chembiochem, 2020, 21(4): 496-499. |
97 | Hsu SK, Tian JM, Ho WF, et al. Enhancing the bioactivity of yttria-stabilized zirconia immobilized with adhesive peptide using L-dopa as cross-linker[J]. Thin Solid Films, 2016, 620: 145-149. |
98 | Liu MY, Zhou JF, Yang Y, et al. Surface modification of zirconia with polydopamine to enhance fibroblast response and decrease bacterial activity in vitro: a potential technique for soft tissue engineering applications[J]. Colloids Surf B Biointerfaces, 2015, 136: 74-83. |
99 | Mahapatro A. Bio-functional nano-coatings on metallic biomaterials[J]. Mater Sci Eng C Mater Biol Appl, 2015, 55: 227-251. |
100 | Osman RB, van der Veen AJ, Huiberts D, et al. 3D-printing zirconia implants; a dream or a reality? An in-vitro study evaluating the dimensional accuracy, surface topography and mechanical properties of printed zirconia implant and discs[J]. J Mech Behav Biomed Mater, 2017, 75: 521-528. |
101 | Böke F, Schickle K, Fischer H. Biological activation of inert ceramics: recent advances using tailored self-assembled monolayers on implant ceramic surfaces[J]. Materials (Basel), 2014, 7(6): 4473-4492. |
102 | Caravaca C, Shi L, Balvay S, et al. Direct silanization of zirconia for increased biointegration[J]. Acta Biomater, 2016, 46: 323-335. |
103 | Zreiqat H, Howlett CR, Zannettino A, et al. Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants[J]. J Biomed Mater Res, 2002, 62(2): 175-184. |
104 | Liang H, Wan YZ, He F, et al. Bioactivity of Mg-ion-implanted zirconia and titanium[J]. Appl Surf Sci, 2007, 253(6): 3326-3333. |
105 | Schienle S, Al-Ahmad A, Kohal RJ, et al. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings[J]. Clin Oral Investig, 2016, 20(7): 1719-1732. |
106 | Xuereb M, Camilleri J, Attard NJ. Systematic review of current dental implant coating materials and novel coating techniques[J]. Int J Prosthodont, 2015, 28(1): 51-59. |
107 | Junker R, Dimakis A, Thoneick M, et al. Effects of implant surface coatings and composition on bone integration: a systematic review[J]. Clin Oral Implants Res, 2009, 20(): 185-206. |
108 | Estrada-Cabrera E, Torres-Ferrer LR, Aztatzi-Aguilar OG, et al. Chitosan-bioglass coatings on partially nanostructured anodized Ti-6Al-4V alloy for biomedical applications[J]. Surf Coat Technol, 2019, 375: 468-476. |
109 | Ranga N, Gahlyan S, Duhan S. Antibacterial efficiency of Zn, Mg and Sr doped bioactive glass for bone tissue engineering[J]. J Nanosci Nanotechnol, 2020, 20(4): 2465-2472. |
110 | Kiefer K, Amlung M, Aktas OC, et al. Novel glass-like coatings for cardiovascular implant application: preparation, characterization and cellular interaction[J]. Mater Sci Eng C Mater Biol Appl, 2016, 58: 812-816. |
111 | Araújo M, Miola M, Venturello A, et al. Glass coa-tings on zirconia with enhanced bioactivity[J]. J Eur Ceram Soc, 2016, 36(13): 3201-3210. |
112 | Ben-Arfa BAE, Miranda Salvado IM, Ferreira JMF, et al. A hundred times faster: novel, rapid sol-gel synthesis of bio-glass nanopowders (Si-Na-Ca-P system, Ca:P=1.67) without aging[J]. Int J Appl Glass Sci, 2017, 8(3): 337-343. |
113 | Rocchietta I, Fontana F, Addis A, et al. Surface-modified zirconia implants: tissue response in rabbits[J]. Clin Oral Implants Res, 2009, 20(8): 844-850. |
114 | Stefanic M, Krnel K, Kosmac T. Novel method for the synthesis of a β-tricalcium phosphate coating on a zirconia implant[J]. J Eur Ceram Soc, 2013, 33(15/16): 3455-3465. |
115 | Yang YZ, Kim KH, Ong JL. A review on calcium phosphate coatings produced using a sputtering process: an alternative to plasma spraying[J]. Biomaterials, 2005, 26(3): 327-337. |
116 | Surmenev RA, Surmeneva MA, Ivanova AA. Signi-ficance of calcium phosphate coatings for the enhancement of new bone osteogenesis: a review[J]. Acta Biomater, 2014, 10(2): 557-579. |
117 | Nijhuis AWG, Leeuwenburgh SCG, Jansen JA. Wet-chemical deposition of functional coatings for bone implantology[J]. Macromol Biosci, 2010, 10(11): 1316-1329. |
118 | Stefanic M, Milacic R, Drazic G, et al. Synthesis of bioactive β‑TCP coatings with tailored physico-chemical properties on zirconia bioceramics[J]. J Mater Sci Mater Med, 2014, 25(10): 2333-2345. |
119 | Faria D, Pires JM, Boccaccini AR, et al. Development of novel zirconia implant’s materials gradated design with improved bioactive surface[J]. J Mech Behav Biomed Mater, 2019, 94: 110-125. |
120 | Song YG, Cho IH. Characteristics and osteogenic effect of zirconia porous scaffold coated with β-TCP/HA[J]. J Adv Prosthodont, 2014, 6(4): 285-294. |
121 | Stefanic M, Krnel K, Pribosic I, et al. Rapid biomimetic deposition of octacalcium phosphate coatings on zirconia ceramics (Y-TZP) for dental implant applications[J]. Appl Surf Sci, 2012, 258(10): 4649-4656. |
122 | Cho Y, Hong J, Ryoo H, et al. Osteogenic responses to zirconia with hydroxyapatite coating by aerosol deposition[J]. J Dent Res, 2015, 94(3): 491-499. |
123 | Furlong RJ, Osborn JF. Fixation of hip prostheses by hydroxyapatite ceramic coatings[J]. J Bone Joint Surg Br, 1991, 73(5): 741-745. |
124 | Pelaez-Vargas A, Gallego-Perez D, Magallanes-Perdomo M, et al. Isotropic micropatterned silica coa-tings on zirconia induce guided cell growth for dental implants[J]. Dent Mater, 2011, 27(6): 581-589. |
125 | Laranjeira MS, Carvalho Â, Pelaez-Vargas A, et al. Modulation of human dermal microvascular endothelial cell and human gingival fibroblast behavior by micropatterned silica coating surfaces for zirconia dental implant applications[J]. Sci Technol Adv Mater, 2014, 15(2): 025001. |
126 | Frandsen CJ, Noh K, Brammer KS, et al. Hybrid micro/nano-topography of a TiO2 nanotube-coated co-mmercial zirconia femoral knee implant promotes bone cell adhesion in vitro [J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(5): 2752-2756. |
127 | Patel SB, Baker N, Marques I, et al. Transparent TiO2 nanotubes on zirconia for biomedical applications[J]. RSC Adv, 2017, 7(48): 30397-30410. |
128 | Ohishi T, Ichikawa K. Formation and gas barrier properties of silica thin films formed on heat resistant PET (Polyethylene Terephthalate) substrate by excimer light irradiation to polysilazane coatings[J]. Mater Lett, 2019, 247: 143-146. |
129 | Deng JL, Hu KY, Lu BF, et al. Influence of B4C on oxidation resistance of PSN/borosilicate glass-B4C field-based repair coating of C/C aircraft brake materials at 700-900 ℃[J]. Ceram Int, 2019, 45(16): 20860-20872. |
130 | Liu J, Hong G, Wu YH, et al. A novel method of surface modification by electrochemical deoxidation: effect on surface characteristics and initial bioactivity of zirconia[J]. J Biomed Mater Res B Appl Biomater, 2017, 105(8): 2641-2652. |
131 | Pelaez-Vargas A, Gallego-Perez D, Ferrell N, et al. Early spreading and propagation of human bone marrow stem cells on isotropic and anisotropic topographies of silica thin films produced via microstamping[J]. Microsc Microanal, 2010, 16(6): 670-676. |
132 | Shon WJ, Chung SH, Kim HK, et al. Peri-implant bone formation of non-thermal atmospheric pressure plasma-treated zirconia implants with different surface roughness in rabbit tibiae[J]. Clin Oral Implants Res, 2014, 25(5): 573-579. |
133 | Kohal RJ, Wolkewitz M, Hinze M, et al. Biomechanical and histological behavior of zirconia implants: an experiment in the rat[J]. Clin Oral Implants Res, 2009, 20(4): 333-339. |
134 | Langhoff JD, Voelter K, Scharnweber D, et al. Comparison of chemically and pharmaceutically modified titanium and zirconia implant surfaces in dentistry: a study in sheep[J]. Int J Oral Maxillofac Surg, 2008, 37(12): 1125-1132. |
[1] | 黄博,王剑,张鑫. 口腔修复中氧化锆陶瓷低温老化的评估及解决策略[J]. 国际口腔医学杂志, 2025, 52(2): 169-175. |
[2] | 刘晶晶,唐睿,袁丽仙,刘鑫. 新型微种植体植入导板引导下微种植体植入成功率的研究[J]. 国际口腔医学杂志, 2025, 52(2): 205-209. |
[3] | 章梦媛,卢洪叶,李千慧,孙平. 细胞自噬及其在口腔种植体骨结合中的作用与机制[J]. 国际口腔医学杂志, 2024, 51(6): 742-748. |
[4] | 李佳敏,李毓晨,葛张洁,廖凌子,郭鑫,郭晓龙,周平. 抗菌肽在口腔钛种植体涂层中的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 572-584. |
[5] | 张政,杨锋,李家锋,曹焜. 钛种植体抗菌化修饰的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 585-595. |
[6] | 姚雪敏,王华,王璐,赵彬. 口腔半透明氧化锆陶瓷粘接效果的影响因素[J]. 国际口腔医学杂志, 2024, 51(4): 450-455. |
[7] | 孙旭,邓振南,文才,赵颖. Er: YAG激光照射种植体表面微形貌变化的扫描电子显微镜观察[J]. 国际口腔医学杂志, 2023, 50(6): 669-673. |
[8] | 黄元鸿,彭显,周学东. 骨碎补在治疗口腔骨相关疾病的研究进展[J]. 国际口腔医学杂志, 2023, 50(6): 679-685. |
[9] | 龚佳明,赵瑞敏,潘宏伟,郎鑫,余占海,李健学. 动态导航与静态导航对种植体准确性的Meta分析[J]. 国际口腔医学杂志, 2023, 50(5): 538-551. |
[10] | 陆倩,夏海斌,王敏. 种植体磨光整形术治疗种植体周围炎的研究进展[J]. 国际口腔医学杂志, 2023, 50(2): 152-158. |
[11] | 满毅, 黄定明. 美学区种植骨增量与邻牙慢性根尖周病的联合治疗策略(上):应用基础及适应证[J]. 国际口腔医学杂志, 2022, 49(5): 497-505. |
[12] | 曾芳,王剑. 全锆冠美学修复效果的影响因素[J]. 国际口腔医学杂志, 2022, 49(2): 233-238. |
[13] | 曹正国. 修复治疗相关的牙周问题考量[J]. 国际口腔医学杂志, 2022, 49(1): 1-11. |
[14] | 杨光美,王剑. 全锆冠机械性能的研究现状及与临床应用的关系[J]. 国际口腔医学杂志, 2022, 49(1): 79-84. |
[15] | 朱轩智,赵蕾. 甲状腺功能减退症与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 380-384. |
|