国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (2): 169-175.doi: 10.7518/gjkq.2025033
Bo Huang(),Jian Wang(
),Xin Zhang
摘要:
具有特殊相变增韧能力的氧化锆陶瓷凭借其优异的机械性能、生物相容性和化学稳定性在口腔修复中得到了广泛的应用,但其相变增韧能力也容易导致临床应用中发生低温老化现象,影响长期使用寿命。低温老化不仅严重影响材料机械性能,还会通过改变半透明度、颜色对美观性造成不利影响。本文深入探讨了影响低温老化的关键因素,包括稳定剂种类和含量、晶粒尺寸及残余应力,并就氧化锆陶瓷低温老化的评估及减缓策略作一综述,为牙科氧化锆的发展提供新视角。
中图分类号:
1 | Ribera OK, Mendes JM, Mendes J, et al. Influence of popular beverages on the fracture resistance of implant-supported bis-acrylic resin provisional crow-ns: an in vitro study[J]. Polymers (Basel), 2023, 15(16): 3411. |
2 | 杨光美, 王剑. 全锆冠机械性能的研究现状及与临床应用的关系[J]. 国际口腔医学杂志, 2022, 49(1): 79-84. |
Yang GM, Wang J. Mechanical properties of monolithic zirconia crowns and its relationship with clinical application[J]. Int J Stomatol, 2022, 49(1): 79-84. | |
3 | Makhija SK, Lawson NC, Gilbert GH, et al. Dentist material selection for single-unit crowns: findings from the National Dental Practice-Based Research Network[J]. J Dent, 2016, 55: 40-47. |
4 | Alqutaibi AY, Ghulam O, Krsoum M, et al. Revolution of current dental zirconia: a comprehensive review[J]. Molecules, 2022, 27(5): 1699. |
5 | Zhang Y, Lawn BR. Novel zirconia materials in dentistry[J]. J Dent Res, 2018, 97(2): 140-147. |
6 | Benalcázar Jalkh EB, Bergamo ETP, Monteiro KN, et al. Aging resistance of an experimental zirconia-toughened alumina composite for large span dental prostheses: optical and mechanical characterization[J]. J Mech Behav Biomed Mater, 2020, 104: 103659. |
7 | Ren X, Pan W. Mechanical properties of high-temperature-degraded yttria-stabilized zirconia[J]. Acta Mater, 2014, 69: 397-406. |
8 | Nistor L, Grădinaru M, Rîcă R, et al. Zirconia use in dentistry-manufacturing and properties[J]. Curr Heal-th Sci J, 2019, 45(1): 28-35. |
9 | Pandoleon P, Kontonasaki E, Kantiranis N, et al. A-ging of 3Y-TZP dental zirconia and yttrium depletion[J]. Dent Mater, 2017, 33(11): e385-e392. |
10 | Hajhamid B, Alfrisany N, Somogyi-Ganss E. The effect of accelerated aging on crystalline structures and optical properties of different monolithic zirconia: a qualitative systematic review[J]. Dent Mater, 2022, 38(4): 569-586. |
11 | de Araújo-Júnior ENS, Bergamo ETP, Campos TMB, et al. Hydrothermal degradation methods affect the properties and phase transformation depth of translucent zirconia[J]. J Mech Behav Biomed Mater, 2020, 112: 104021. |
12 | Furuya K, Takemoto S, Yamashita S, et al. Low-temperature degradation of high-strength Y-TZP (yttria-stabilized tetragonal zirconia polycrystal) [J]. Dent Mater J, 2020, 39(4): 577-586. |
13 | Koenig V, Bekaert S, Dupont N, et al. Intraoral low-temperature degradation of monolithic zirconia dental prostheses: results of a prospective clinical study with ex vivo monitoring[J]. Dent Mater, 2021, 37(7): 1134-1149. |
14 | Miragaya LM, Guimarães RB, Souza ROAE, et al. Effect of intra-oral aging on t→m phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics[J]. J Mech Behav Biomed Mater, 2017, 72: 14-21. |
15 | Bergamo E, da Silva WJ, Cesar PF, et al. Fracture load and phase transformation of monolithic zirconia crowns submitted to different aging protocols[J]. Oper Dent, 2016, 41(5): E118-E130. |
16 | Nakamura K, Harada A, Kanno T, et al. The in-fluence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns[J]. J Mech Behav Biomed Mater, 2015, 47: 49-56. |
17 | Moon JE, Kim SH, Lee JB, et al. Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement[J]. Ceram Int, 2016, 42(1): 1552-1562. |
18 | Flinn BD, Raigrodski AJ, Mancl LA, et al. In-fluence of aging on flexural strength of translucent zirconia for monolithic restorations[J]. J Prosthet Dent, 2017, 117(2): 303-309. |
19 | Hallmann L, Mehl A, Ulmer P, et al. The influence of grain size on low-temperature degradation of dental zirconia[J]. J Biomed Mater Res B Appl Biomater, 2012, 100(2): 447-456. |
20 | Wille S, Zumstrull P, Kaidas V, et al. Low temperature degradation of single layers of multilayered zirconia in comparison to conventional unshaded zirconia: phase transformation and flexural strength[J]. J Mech Behav Biomed Mater, 2018, 77: 171-175. |
21 | Liu HY, Inokoshi M, Nozaki K, et al. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia[J]. Dent Mater, 2022, 38(2): 451-468. |
22 | Zhai ZD, Sun J. Research on the low-temperature degradation of dental zirconia ceramics fabricated by stereolithography[J]. J Prosthet Dent, 2023, 130(4): 629-638. |
23 | Pereira GKR, Venturini AB, Silvestri T, et al. Low-temperature degradation of Y-TZP ceramics: a systematic review and meta-analysis[J]. J Mech Behav Biomed Mater, 2015, 55: 151-163. |
24 | Cattani-Lorente M, Durual S, Amez-Droz M, et al. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: a comparison of numerical predictions with experimental data after 2 years of aging[J]. Dent Mater, 2016, 32(3): 394-402. |
25 | Papageorgiou-Kyrana K, Fasoula M, Kontonasaki E. Translucency of monolithic zirconia after hydrothermal aging: a review of in vitro studies[J]. J Prosthodont, 2020, 29(6): 489-500. |
26 | Kim HK, Kim SH. Effect of hydrothermal aging on the optical properties of precolored dental monoli-thic zirconia ceramics[J]. J Prosthet Dent, 2019, 121(4): 676-682. |
27 | Brentel AS, Kantorski KZ, Valandro LF, et al. Confocal laser microscopic analysis of biofilm on newer feldspar ceramic[J]. Oper Dent, 2011, 36(1): 43-51. |
28 | Badarneh A, Eun Choi JJ, Lyons K, et al. The effect of aging on the wear performance of monolithic zirconia[J]. Dent Mater, 2022, 38(5): e136-e146. |
29 | Yang H, Xu YL, Hong G, et al. Effects of low-temperature degradation on the surface roughness of yttria-stabilized tetragonal zirconia polycrystal cera-mics: a systematic review and meta-analysis[J]. J Pro-sthet Dent, 2021, 125(2): 222-230. |
30 | Tang K, Luo ML, Zhou W, et al. The integration of peri-implant soft tissues around zirconia abutments: challenges and strategies[J]. Bioact Mater, 2023, 27: 348-361. |
31 | Samodurova A, Kocjan A, Swain MV, et al. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics[J]. Acta Biomater, 2015, 11: 477-487. |
32 | Wertz M, Fuchs F, Hoelzig H, et al. The influence of surface preparation, chewing simulation, and thermal cycling on the phase composition of dental zirconia[J]. Materials, 2021, 14(9): 2133. |
33 | Aragón-Duarte MC, Nevarez-Rascón A, Esparza-Ponce HE, et al. Nanomechanical properties of zirconia-yttria and alumina zirconia-yttria biomedical ceramics, subjected to low temperature aging[J]. Ceram Int, 2017, 43(5): 3931-3939. |
34 | Kolakarnprasert N, Kaizer MR, Kim DK, et al. New multi-layered zirconias: composition, microstructure and translucency[J]. Dent Mater, 2019, 35(5): 797-806. |
35 | Ban S. Chemical durability of high translucent dental zirconia[J]. Dent Mater J, 2020, 39(1): 12-23. |
36 | Lucas TJ, Lawson NC, Janowski GM, et al. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia[J]. Dent Mater, 2015, 31(12): 1487-1492. |
37 | Lughi V, Sergo V. Low temperature degradation -a-ging- of zirconia: a critical review of the relevant aspects in dentistry[J]. Dent Mater, 2010, 26(8): 807-820. |
38 | Kim MJ, Ahn JS, Kim JH, et al. Effects of the sinte-ring conditions of dental zirconia ceramics on the grain size and translucency[J]. J Adv Prosthodont, 2013, 5(2): 161-166. |
39 | Denry I, Kelly JR. Emerging ceramic-based mate-rials for dentistry[J]. J Dent Res, 2014, 93(12): 1235-1242. |
40 | Sergo V, Clarke DR, Pompe W. Deformation bands in ceria-stabilized tetragonal zirconia/alumina:Ⅰ, measurement of internal stresses[J]. J Am Ceram Soc, 1995, 78(3): 633-640. |
41 | Camposilvan E, Flamant Q, Anglada M. Surface roughened zirconia: towards hydrothermal stability[J]. J Mech Behav Biomed Mater, 2015, 47: 95-106. |
42 | Soylemez B, Sener EC, Yurdakul A, et al. Fracture toughness enhancement of yttria-stabilized tetragonal zirconia polycrystalline ceramics through magnesia-partially stabilized zirconia addition[J]. J Sci Adv Mater Devices, 2020, 5(4): 527-534. |
43 | Yusuf D, Maryani E, Mardhian DF, et al. Evaluation of structural stability, mechanical properties, and cor-rosion resistance of magnesia partially stabilized zirconia (Mg-PSZ)[J]. Molecules, 2023, 28(16): 6054. |
44 | Rauchs G, Fett T, Munz D, et al. Tetragonal-to-monoclinic phase transformation in CeO2-stabilised zirconia under uniaxial loading[J]. J Eur Ceram Soc, 2001, 21(12): 2229-2241. |
45 | Ban S. Classification and properties of dental zirconia as implant fixtures and superstructures[J]. Materials, 2021, 14(17): 4879. |
46 | Wang W, Sun J. Dimensional accuracy and clinical adaptation of ceramic crowns fabricated with the stereolithography technique[J]. J Prosthet Dent, 2021, 125(4): 657-663. |
47 | Miura S, Shinya A, Ishida Y, et al. The effect of low-temperature degradation and building directions on the mechanical properties of additive-manufactured zirconia[J]. Dent Mater J, 2023, 42(6): 800-805. |
48 | Revilla-León M, Al-Haj Husain N, Ceballos L, et al. Flexural strength and Weibull characteristics of stereolithography additive manufactured versus milled zirconia[J]. J Prosthet Dent, 2021, 125(4): 685-690. |
[1] | 王浩浩 程磊. 口腔修复材料界面对菌斑生物膜的影响[J]. 国际口腔医学杂志, 2015, 42(3): 352-356. |
[2] | 张雅蓉 唐舸 刘杉 于海洋. 5种常用大鼠骨质疏松动物模型的特点[J]. 国际口腔医学杂志, 2013, 40(5): 629-633. |
[3] | 喻娜 马超逸 岳莉 于海洋. 不同种类的固定修复体市场需求分析[J]. 国际口腔医学杂志, 2012, 39(4): 453-455. |
[4] | 钱超综述 孙健审校. 快速成型技术在口腔修复中的应用[J]. 国际口腔医学杂志, 2012, 39(3): 390-393. |
[5] | 刘霜综述 张连云, 李长义审校. 口腔修复支架用钛合金的研究进展[J]. 国际口腔医学杂志, 2010, 37(3): 362-362~364. |
[6] | 丁农乐1,杨正2综述 刘敏1,杨四维2审校. 牙本质发生不全Ⅱ型的研究现状[J]. 国际口腔医学杂志, 2009, 36(2): 215-215~217. |
[7] | 郑韵哲1综述 吴琳1,王勇2审校. 计算机辅助制作技术在口腔修复领域的应用[J]. 国际口腔医学杂志, 2008, 35(6): 704-704~708. |
[8] | 于皓综述 王贻宁审校. 计算机辅助设计与计算机辅助制作技术在口腔修复中的应用[J]. 国际口腔医学杂志, 2008, 35(3): 344-344~346. |
[9] | 刘曼,王少安,. 脱细胞真皮基质在口腔临床的应用[J]. 国际口腔医学杂志, 2006, 33(03): 225-227. |
[10] | 马守治,程辉,闫福华. 口腔修复材料对细菌在其表面粘附和生长的影响[J]. 国际口腔医学杂志, 2005, 32(05): 373-374. |
[11] | 王强,程祥荣. 激光焊钛技术及其在口腔修复领域的应用[J]. 国际口腔医学杂志, 2005, 32(04): 320-321. |
[12] | 崔燕. 与先天性缺牙相关的综合征及口腔修复治疗[J]. 国际口腔医学杂志, 2002, 29(05): -. |
[13] | 赵鹃. 深冷处理技术及其在口腔修复学领域的应用前景[J]. 国际口腔医学杂志, 2002, 29(02): -. |
[14] | 高海. 显微镜在口腔修复中的应用[J]. 国际口腔医学杂志, 2002, 29(01): -. |
[15] | 陈传俊,张志愿. 纳米技术及其在口腔医学领域的应用前景[J]. 国际口腔医学杂志, 2001, 28(05): -. |
|