国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (2): 169-175.doi: 10.7518/gjkq.2025033

• 材料学专栏 • 上一篇    下一篇

口腔修复中氧化锆陶瓷低温老化的评估及解决策略

黄博(),王剑(),张鑫   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院修复科 成都 610041
  • 收稿日期:2024-03-15 修回日期:2024-09-18 出版日期:2025-03-01 发布日期:2025-03-01
  • 通讯作者: 王剑
  • 作者简介:黄博,学士,Email:huangbo0@stu.scu.edu.cn
  • 基金资助:
    四川大学华西口腔医院研发与探索项目(RD-03-202107)

Zirconia ceramics in dental restoration: evaluation and solutions for low-temperature degradation

Bo Huang(),Jian Wang(),Xin Zhang   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-03-15 Revised:2024-09-18 Online:2025-03-01 Published:2025-03-01
  • Contact: Jian Wang
  • Supported by:
    Research and Development Program of West China Hospital of Stomatology, Sichuan University(RD-03-202107)

摘要:

具有特殊相变增韧能力的氧化锆陶瓷凭借其优异的机械性能、生物相容性和化学稳定性在口腔修复中得到了广泛的应用,但其相变增韧能力也容易导致临床应用中发生低温老化现象,影响长期使用寿命。低温老化不仅严重影响材料机械性能,还会通过改变半透明度、颜色对美观性造成不利影响。本文深入探讨了影响低温老化的关键因素,包括稳定剂种类和含量、晶粒尺寸及残余应力,并就氧化锆陶瓷低温老化的评估及减缓策略作一综述,为牙科氧化锆的发展提供新视角。

关键词: 口腔修复, 全氧化锆, 低温老化, 美观性, 氧化钇, 掺杂剂, 残余应力, 增材制造

Abstract:

Zirconia ceramics, which have unique phase transformation toughening capabilities, have garnered widespread attention for their excellent mechanical properties, biocompatibility, chemical stability, and optical characteristics. However, their phase transformation toughening ability is a limitation in clinical applications, affecting the potential for long-term use due to low-temperature degradation (LTD). LTD not only severely affects the mechanical properties of the material but also has adverse effects on aesthetics by changing the translucency and color. This article delves into the key factors influencing LTD, including dopant types as well as content, grain size, and residual stress. Moreover, this article reviews strategies for evaluating and mitigating LTD in zirconia ceramics, providing new perspectives for the development of dental zirconia.

Key words: dental restoration, monolithic zirconia crowns, low temperature degradation, aesthetic appeal, yttria, dopant, residual stresses, additive manufacture

中图分类号: 

  • R783.1
1 Ribera OK, Mendes JM, Mendes J, et al. Influence of popular beverages on the fracture resistance of implant-supported bis-acrylic resin provisional crow-ns: an in vitro study[J]. Polymers (Basel), 2023, 15(16): 3411.
2 杨光美, 王剑. 全锆冠机械性能的研究现状及与临床应用的关系[J]. 国际口腔医学杂志, 2022, 49(1): 79-84.
Yang GM, Wang J. Mechanical properties of monolithic zirconia crowns and its relationship with clinical application[J]. Int J Stomatol, 2022, 49(1): 79-84.
3 Makhija SK, Lawson NC, Gilbert GH, et al. Dentist material selection for single-unit crowns: findings from the National Dental Practice-Based Research Network[J]. J Dent, 2016, 55: 40-47.
4 Alqutaibi AY, Ghulam O, Krsoum M, et al. Revolution of current dental zirconia: a comprehensive review[J]. Molecules, 2022, 27(5): 1699.
5 Zhang Y, Lawn BR. Novel zirconia materials in dentistry[J]. J Dent Res, 2018, 97(2): 140-147.
6 Benalcázar Jalkh EB, Bergamo ETP, Monteiro KN, et al. Aging resistance of an experimental zirconia-toughened alumina composite for large span dental prostheses: optical and mechanical characterization[J]. J Mech Behav Biomed Mater, 2020, 104: 103659.
7 Ren X, Pan W. Mechanical properties of high-temperature-degraded yttria-stabilized zirconia[J]. Acta Mater, 2014, 69: 397-406.
8 Nistor L, Grădinaru M, Rîcă R, et al. Zirconia use in dentistry-manufacturing and properties[J]. Curr Heal-th Sci J, 2019, 45(1): 28-35.
9 Pandoleon P, Kontonasaki E, Kantiranis N, et al. A-ging of 3Y-TZP dental zirconia and yttrium depletion[J]. Dent Mater, 2017, 33(11): e385-e392.
10 Hajhamid B, Alfrisany N, Somogyi-Ganss E. The effect of accelerated aging on crystalline structures and optical properties of different monolithic zirconia: a qualitative systematic review[J]. Dent Mater, 2022, 38(4): 569-586.
11 de Araújo-Júnior ENS, Bergamo ETP, Campos TMB, et al. Hydrothermal degradation methods affect the properties and phase transformation depth of translucent zirconia[J]. J Mech Behav Biomed Mater, 2020, 112: 104021.
12 Furuya K, Takemoto S, Yamashita S, et al. Low-temperature degradation of high-strength Y-TZP (yttria-stabilized tetragonal zirconia polycrystal) [J]. Dent Mater J, 2020, 39(4): 577-586.
13 Koenig V, Bekaert S, Dupont N, et al. Intraoral low-temperature degradation of monolithic zirconia dental prostheses: results of a prospective clinical study with ex vivo monitoring[J]. Dent Mater, 2021, 37(7): 1134-1149.
14 Miragaya LM, Guimarães RB, Souza ROAE, et al. Effect of intra-oral aging on t→m phase transformation, microstructure, and mechanical properties of Y-TZP dental ceramics[J]. J Mech Behav Biomed Mater, 2017, 72: 14-21.
15 Bergamo E, da Silva WJ, Cesar PF, et al. Fracture load and phase transformation of monolithic zirconia crowns submitted to different aging protocols[J]. Oper Dent, 2016, 41(5): E118-E130.
16 Nakamura K, Harada A, Kanno T, et al. The in-fluence of low-temperature degradation and cyclic loading on the fracture resistance of monolithic zirconia molar crowns[J]. J Mech Behav Biomed Mater, 2015, 47: 49-56.
17 Moon JE, Kim SH, Lee JB, et al. Effects of airborne-particle abrasion protocol choice on the surface characteristics of monolithic zirconia materials and the shear bond strength of resin cement[J]. Ceram Int, 2016, 42(1): 1552-1562.
18 Flinn BD, Raigrodski AJ, Mancl LA, et al. In-fluence of aging on flexural strength of translucent zirconia for monolithic restorations[J]. J Prosthet Dent, 2017, 117(2): 303-309.
19 Hallmann L, Mehl A, Ulmer P, et al. The influence of grain size on low-temperature degradation of dental zirconia[J]. J Biomed Mater Res B Appl Biomater, 2012, 100(2): 447-456.
20 Wille S, Zumstrull P, Kaidas V, et al. Low temperature degradation of single layers of multilayered zirconia in comparison to conventional unshaded zirconia: phase transformation and flexural strength[J]. J Mech Behav Biomed Mater, 2018, 77: 171-175.
21 Liu HY, Inokoshi M, Nozaki K, et al. Influence of high-speed sintering protocols on translucency, mechanical properties, microstructure, crystallography, and low-temperature degradation of highly translucent zirconia[J]. Dent Mater, 2022, 38(2): 451-468.
22 Zhai ZD, Sun J. Research on the low-temperature degradation of dental zirconia ceramics fabricated by stereolithography[J]. J Prosthet Dent, 2023, 130(4): 629-638.
23 Pereira GKR, Venturini AB, Silvestri T, et al. Low-temperature degradation of Y-TZP ceramics: a systematic review and meta-analysis[J]. J Mech Behav Biomed Mater, 2015, 55: 151-163.
24 Cattani-Lorente M, Durual S, Amez-Droz M, et al. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: a comparison of numerical predictions with experimental data after 2 years of aging[J]. Dent Mater, 2016, 32(3): 394-402.
25 Papageorgiou-Kyrana K, Fasoula M, Kontonasaki E. Translucency of monolithic zirconia after hydrothermal aging: a review of in vitro studies[J]. J Prosthodont, 2020, 29(6): 489-500.
26 Kim HK, Kim SH. Effect of hydrothermal aging on the optical properties of precolored dental monoli-thic zirconia ceramics[J]. J Prosthet Dent, 2019, 121(4): 676-682.
27 Brentel AS, Kantorski KZ, Valandro LF, et al. Confocal laser microscopic analysis of biofilm on newer feldspar ceramic[J]. Oper Dent, 2011, 36(1): 43-51.
28 Badarneh A, Eun Choi JJ, Lyons K, et al. The effect of aging on the wear performance of monolithic zirconia[J]. Dent Mater, 2022, 38(5): e136-e146.
29 Yang H, Xu YL, Hong G, et al. Effects of low-temperature degradation on the surface roughness of yttria-stabilized tetragonal zirconia polycrystal cera-mics: a systematic review and meta-analysis[J]. J Pro-sthet Dent, 2021, 125(2): 222-230.
30 Tang K, Luo ML, Zhou W, et al. The integration of peri-implant soft tissues around zirconia abutments: challenges and strategies[J]. Bioact Mater, 2023, 27: 348-361.
31 Samodurova A, Kocjan A, Swain MV, et al. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics[J]. Acta Biomater, 2015, 11: 477-487.
32 Wertz M, Fuchs F, Hoelzig H, et al. The influence of surface preparation, chewing simulation, and thermal cycling on the phase composition of dental zirconia[J]. Materials, 2021, 14(9): 2133.
33 Aragón-Duarte MC, Nevarez-Rascón A, Esparza-Ponce HE, et al. Nanomechanical properties of zirconia-yttria and alumina zirconia-yttria biomedical ceramics, subjected to low temperature aging[J]. Ceram Int, 2017, 43(5): 3931-3939.
34 Kolakarnprasert N, Kaizer MR, Kim DK, et al. New multi-layered zirconias: composition, microstructure and translucency[J]. Dent Mater, 2019, 35(5): 797-806.
35 Ban S. Chemical durability of high translucent dental zirconia[J]. Dent Mater J, 2020, 39(1): 12-23.
36 Lucas TJ, Lawson NC, Janowski GM, et al. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia[J]. Dent Mater, 2015, 31(12): 1487-1492.
37 Lughi V, Sergo V. Low temperature degradation -a-ging- of zirconia: a critical review of the relevant aspects in dentistry[J]. Dent Mater, 2010, 26(8): 807-820.
38 Kim MJ, Ahn JS, Kim JH, et al. Effects of the sinte-ring conditions of dental zirconia ceramics on the grain size and translucency[J]. J Adv Prosthodont, 2013, 5(2): 161-166.
39 Denry I, Kelly JR. Emerging ceramic-based mate-rials for dentistry[J]. J Dent Res, 2014, 93(12): 1235-1242.
40 Sergo V, Clarke DR, Pompe W. Deformation bands in ceria-stabilized tetragonal zirconia/alumina:Ⅰ, measurement of internal stresses[J]. J Am Ceram Soc, 1995, 78(3): 633-640.
41 Camposilvan E, Flamant Q, Anglada M. Surface roughened zirconia: towards hydrothermal stability[J]. J Mech Behav Biomed Mater, 2015, 47: 95-106.
42 Soylemez B, Sener EC, Yurdakul A, et al. Fracture toughness enhancement of yttria-stabilized tetragonal zirconia polycrystalline ceramics through magnesia-partially stabilized zirconia addition[J]. J Sci Adv Mater Devices, 2020, 5(4): 527-534.
43 Yusuf D, Maryani E, Mardhian DF, et al. Evaluation of structural stability, mechanical properties, and cor-rosion resistance of magnesia partially stabilized zirconia (Mg-PSZ)[J]. Molecules, 2023, 28(16): 6054.
44 Rauchs G, Fett T, Munz D, et al. Tetragonal-to-monoclinic phase transformation in CeO2-stabilised zirconia under uniaxial loading[J]. J Eur Ceram Soc, 2001, 21(12): 2229-2241.
45 Ban S. Classification and properties of dental zirconia as implant fixtures and superstructures[J]. Materials, 2021, 14(17): 4879.
46 Wang W, Sun J. Dimensional accuracy and clinical adaptation of ceramic crowns fabricated with the stereolithography technique[J]. J Prosthet Dent, 2021, 125(4): 657-663.
47 Miura S, Shinya A, Ishida Y, et al. The effect of low-temperature degradation and building directions on the mechanical properties of additive-manufactured zirconia[J]. Dent Mater J, 2023, 42(6): 800-805.
48 Revilla-León M, Al-Haj Husain N, Ceballos L, et al. Flexural strength and Weibull characteristics of stereolithography additive manufactured versus milled zirconia[J]. J Prosthet Dent, 2021, 125(4): 685-690.
[1] 王浩浩 程磊. 口腔修复材料界面对菌斑生物膜的影响[J]. 国际口腔医学杂志, 2015, 42(3): 352-356.
[2] 张雅蓉 唐舸 刘杉 于海洋. 5种常用大鼠骨质疏松动物模型的特点[J]. 国际口腔医学杂志, 2013, 40(5): 629-633.
[3] 喻娜 马超逸 岳莉 于海洋. 不同种类的固定修复体市场需求分析[J]. 国际口腔医学杂志, 2012, 39(4): 453-455.
[4] 钱超综述 孙健审校. 快速成型技术在口腔修复中的应用[J]. 国际口腔医学杂志, 2012, 39(3): 390-393.
[5] 刘霜综述 张连云, 李长义审校. 口腔修复支架用钛合金的研究进展[J]. 国际口腔医学杂志, 2010, 37(3): 362-362~364.
[6] 丁农乐1,杨正2综述 刘敏1,杨四维2审校. 牙本质发生不全Ⅱ型的研究现状[J]. 国际口腔医学杂志, 2009, 36(2): 215-215~217.
[7] 郑韵哲1综述 吴琳1,王勇2审校. 计算机辅助制作技术在口腔修复领域的应用[J]. 国际口腔医学杂志, 2008, 35(6): 704-704~708.
[8] 于皓综述 王贻宁审校. 计算机辅助设计与计算机辅助制作技术在口腔修复中的应用[J]. 国际口腔医学杂志, 2008, 35(3): 344-344~346.
[9] 刘曼,王少安,. 脱细胞真皮基质在口腔临床的应用[J]. 国际口腔医学杂志, 2006, 33(03): 225-227.
[10] 马守治,程辉,闫福华. 口腔修复材料对细菌在其表面粘附和生长的影响[J]. 国际口腔医学杂志, 2005, 32(05): 373-374.
[11] 王强,程祥荣. 激光焊钛技术及其在口腔修复领域的应用[J]. 国际口腔医学杂志, 2005, 32(04): 320-321.
[12] 崔燕. 与先天性缺牙相关的综合征及口腔修复治疗[J]. 国际口腔医学杂志, 2002, 29(05): -.
[13] 赵鹃. 深冷处理技术及其在口腔修复学领域的应用前景[J]. 国际口腔医学杂志, 2002, 29(02): -.
[14] 高海. 显微镜在口腔修复中的应用[J]. 国际口腔医学杂志, 2002, 29(01): -.
[15] 陈传俊,张志愿. 纳米技术及其在口腔医学领域的应用前景[J]. 国际口腔医学杂志, 2001, 28(05): -.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[8] 潘劲松. 颈总动脉指压和颈内动脉球囊阻断试验在大脑血液动力学中的不同影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[9] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[10] 王昆润. 后牙冠根斜形牙折的治疗[J]. 国际口腔医学杂志, 1999, 26(05): .