国际口腔医学杂志 ›› 2025, Vol. 52 ›› Issue (2): 176-182.doi: 10.7518/gjkq.2025041

• 材料学专栏 • 上一篇    下一篇

牙齿漂白材料的研究新进展

苏晓凡1,2(),刘素汝1,2,胡兴宇1,2,刘磊1,2,田卫东1,2,谢利1()   

  1. 1.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;口腔转化医学教育部工程研究中心 口腔再生医学国家地方联合工程实验室 成都 610041
    2.口腔疾病防治全国重点实验室;国家口腔医学中心 国家口腔疾病临床医学研究中心;四川大学华西口腔医院创伤整形外科 成都 610041
  • 收稿日期:2024-08-17 修回日期:2024-12-16 出版日期:2025-03-01 发布日期:2025-03-01
  • 通讯作者: 谢利
  • 作者简介:苏晓凡,住院医师,硕士,Email:steafan2020@163.com
  • 基金资助:
    国家自然科学基金(32271415);国家重点研发计划(2022YFA1104400);四川省自然科学基金(2023NSFSC0561);四川省科技支撑项目(2022YFS0283)

Recent progress in research on tooth bleaching materials

Xiaofan Su1,2(),Suru Liu1,2,Xingyu Hu1,2,Lei Liu1,2,Weidong Tian1,2,Li Xie1()   

  1. 1.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, Chengdu 610041, China
    2.State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Traumatic and Plastic Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-08-17 Revised:2024-12-16 Online:2025-03-01 Published:2025-03-01
  • Contact: Li Xie
  • Supported by:
    National Natural Science Foundation of China(32271415);National Key R&D Program of China(2022YFA1104400);Natural Science Foundation of Sichuan Province(2023NSFSC0561);Program of Department of Science and Technology of Sichuan Province(2022YFS0283)

摘要:

目前临床应用的牙齿漂白材料主要以过氧化氢作为功能成分。为达到有效的漂白效果,通常需要使用高浓度过氧化氢或较长的接触时间。然而,高浓度过氧化氢或长接触时间常导致牙齿敏感、釉质损伤、软组织损伤等不良反应,这极大地限制了牙齿漂白材料的临床应用。近年来,以产生大量强氧化性自由基或者活性氧为特点的高级氧化技术飞速发展,为研发新型牙齿漂白材料提供了新策略和新方法,可望提高牙齿漂白的治疗效果并减少或避免其并发症。本文系统性地总结了牙齿漂白材料的研究新进展,着重介绍其种类、作用机制、有效性和安全性评价结果。同时,也对研究中存在的不足以及未来发展方向进行了评述。

关键词: 牙齿漂白材料, 高级氧化技术, 类芬顿反应, 光催化, 压电催化

Abstract:

Hydrogen peroxide is the primary functional component in tooth bleaching materials in clinical applications. Achieving effective bleaching outcomes typically necessitates the use of high concentrations of hydrogen peroxide or prolonged contact times. However, the application of high concentrations or prolonged contact times often results in adverse effects, such as tooth sensitivity, enamel damage, and soft tissue irritation, significantly constraining the clinical utility of tooth bleaching materials. In recent years, advanced oxidation processes have rapidly developed and are characterized by the generation of numerous strong oxidative free radicals or reactive oxygen species. This advancement provides new strategies and methods for the formulation of innovative tooth bleaching mate-rials to improve therapeutic effects while minimizing or avoiding associated complications. This article systematically reviews the research progress of novel tooth bleaching materials and presents results from assessments of material effectiveness and safety. Additionally, the article addresses existing research limitations and provides insights into potential directions for future studies.

Key words: tooth bleaching material, advanced oxidation process, Fenton-like reaction, photocatalysis, piezoelectric catalysis

中图分类号: 

  • R781

《口腔癌、口咽癌——全生命周期诊疗及康复》出版发行"

1 中华口腔医学会口腔修复学专业委员会. 牙齿漂白治疗技术指南[J]. 中华口腔医学杂志, 2021, 56(12): 1191-1196.
Society of Prosthodontics, Chinese Stomatological Association. Guideline of tooth bleaching technology[J]. Chin J Stomatol, 2021, 56(12): 1191-1196.
2 陈柳池, 蒋宏伟. 牙髓治疗后牙齿内源性着色的研究进展[J]. 中华口腔医学研究杂志(电子版), 2020, 14(4): 260-264.
Chen LC, Jiang HW. Reseach progress of intrinsic staining of tooth induced by endodontic treatment[J]. Chin J Stomatol Res (Electron Ed), 2020, 14(4): 260-264.
3 李刚. 着色牙: 外源性着色的原因与治疗[J]. 口腔护理用品工业, 2023, 33(2): 27-29.
Li G. Colored teeth: causes and treatment of exogenous coloring[J]. Oral Care Ind, 2023, 33(2): 27-29.
4 Gasmi Benahmed A, Gasmi A, Menzel A, et al. A review on natural teeth whitening[J]. J Oral Biosci, 2022, 64(1): 49-58.
5 Alkahtani R, Stone S, German M, et al. A review on dental whitening[J]. J Dent, 2020, 100: 103423.
6 Kwon SR, Wertz PW. Review of the mechanism of tooth whitening[J]. J Esthet Restor Dent, 2015, 27(5): 240-257.
7 Carey CM. Tooth whitening: what we now know[J]. J Evid Based Dent Pract, 2014, 14(): 70-76.
8 Dioguardi M, Quarta C, Spirito F, et al. Bleaching in vital teeth: a systematic review[J]. J Biol Reg Homeos Ag, 2022, 36(2): 295-304.
9 Redha O, Mazinanian M, Nguyen S, et al. Compromised dental cells viability following teeth-white-ning exposure[J]. Sci Rep, 2021, 11(1): 15547.
10 Tan XZ, Liu SR, Hu XY, et al. Near-infrared-enhanced dual enzyme-mimicking Ag-TiO2- x @Alginate microspheres with antibactericidal and oxyge-neration abilities to treat periodontitis[J]. ACS Appl Mater Interfaces, 2023, 15(1): 391-406.
11 Xu ZY, Hu XY, Xie L, et al. Visible light-induced photocatalytic chlorine activation enhanced the 0.5% neutral-NaClO/TiO2- x system as an efficient and safe root canal irrigant[J]. Chem Eng J, 2022, 431: 134119.
12 Chen JQ, Zhu ZY, Pan QY, et al. Targeted therapy of oral squamous cell carcinoma with cancer cell membrane coated co-fc nanoparticles via autophagy inhibition[J]. Adv Funct Materials, 2023, 33(24): 2300235.
13 Rodríguez-Martínez J, Valiente M, Sánchez-Martín MJ. Tooth whitening: from the established treatments to novel approaches to prevent side effects[J]. J Esthet Restor Dent, 2019, 31(5): 431-440.
14 薛舒尹, 叶玲. 活髓牙漂白引起牙齿敏感的研究进展[J]. 国际口腔医学杂志, 2017, 44(5): 602-607.
Xue SY, Ye L. Etiology and preventions of blea-ching sensitivity in vital tooth[J]. Int J Stomatol, 2017, 44(5): 602-607.
15 Grazioli G, Valente LL, Isolan CP, et al. Bleaching and enamel surface interactions resulting from the use of highly-concentrated bleaching gels[J]. Arch Oral Biol, 2018, 87: 157-162.
16 Quirynen M, Bollen CM. The influence of surface roughness and surface-free energy on supra- and subgingival plaque formation in man. A review of the literature[J]. J Clin Periodontol, 1995, 22(1): 1-14.
17 Alqahtani MQ. Tooth-bleaching procedures and their controversial effects: a literature review[J]. Saudi Dent J, 2014, 26(2): 33-46.
18 Carneiro TS, Favoreto MW, Bernardi LG, et al. Gingival irritation in patients submitted to at-home bleaching with different cutouts of the bleaching tray: a randomized, single-blind clinical trial[J]. Clin Oral Investig, 2022, 26(6): 4381-4390.
19 陈卓. 简述医疗废水处理中高级氧化技术应用[J]. 清洗世界, 2022, 38(10): 81-83.
Chen Z. Brief introduction to the application of advanced oxidation technology in medical wastewater treatment[J]. Clean World, 2022, 38(10): 81-83.
20 Glaze WH, Kang JW, Chapin DH. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone Sci Eng, 1987, 9(4): 335-352.
21 Giannakis S. A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: surface functionalization, biomass treatment, combatting cancer and other medical uses[J]. Appl Catal B Environ, 2019, 248: 309-319.
22 Anagnostaki E, Mylona V, Parker S, et al. Assessing the viability of laser-activated dental bleaching compared to conventional in-office bleaching methods: a systematic review of clinical and in vitro studies[J]. Appl Sci, 2023, 13(22): 12459.
23 Deger C, Mujdeci A. Whitening dentifrices: a review[J]. J Med Sci, 2021, 5: 355-360.
24 Ziembowicz S, Kida M. Limitations and future directions of application of the Fenton-like process in micropollutants degradation in water and wastewater treatment: a critical review[J]. Chemosphere, 2022, 296: 134041.
25 Thomas N, Dionysiou DD, Pillai SC. Heterogeneous Fenton catalysts: a review of recent advances[J]. J Hazard Mater, 2021, 404(Pt B): 124082.
26 Fenton HJH. L Ⅹ Ⅹ Ⅲ . Oxidation of tartaric acid in presence of iron[J]. J Chem Soc, Trans, 1894, 65: 899-910.
27 侯琳萌, 清华, 吉庆华. 类芬顿反应的催化剂、原理与机制研究进展[J]. 环境化学, 2022, 41(6): 1843-1855.
Hou LM, Qing H, Ji QH. Research progress on catalysts, principles and mechanisms of Fenton-like rea-ctions[J]. Environ Chem, 2022, 41(6): 1843-1855.
28 Tang ZM, Zhao PR, Wang H, et al. Biomedicine meets Fenton chemistry[J]. Chem Rev, 2021, 121(4): 1981-2019.
29 Lee BS, Huang LC, Hong CY, et al. Synthesis of metal ion-histidine complex functionalized mesoporous silica nanocatalysts for enhanced light-free tooth bleaching[J]. Acta Biomater, 2011, 7(5): 2276-2284.
30 Young N, Fairley P, Mohan V, et al. A study of hydrogen peroxide chemistry and photochemistry in tea stain solution with relevance to clinical tooth whitening[J]. J Dent, 2012, 40(): e11-e16.
31 Cuerda-Correa EM, Alexandre-Franco MF, Fernán-dez-González C. Advanced oxidation processes for the removal of antibiotics from water. An overview[J]. Water, 2019, 12(1): 102.
32 Hu XY, Xie L, Xu ZY, et al. Photothermal-enhanced Fenton-like catalytic activity of oxygen-deficient nanotitania for efficient and safe tooth whitening[J]. ACS Appl Mater Interfaces, 2021, 13(30): 35315-35327.
33 Liu M, Huang L, Xu XY, et al. Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining[J]. ACS Nano, 2022, 16(6): 9479-9497.
34 Lee J, von Gunten U, Kim JH. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks[J]. Environ Sci Technol, 2020, 54(6): 3064-3081.
35 Yang S, Sui BY, Liu X, et al. A novel tooth blea-ching gel based on peroxymonosulfate/polyphosphates advanced oxidation process: effective white-ning avoiding pulp damage and sensitivity[J]. Chem Eng J, 2022, 429: 132525.
36 Liu H, Wang CY, Wang GX. Photocatalytic advanced oxidation processes for water treatment: recent advances and perspective[J]. Chem Asian J, 2020, 15(20): 3239-3253.
37 Wang Y, Lin Y, He SY, et al. Singlet oxygen: properties, generation, detection, and environmental applications[J]. J Hazard Mater, 2024, 461: 132538.
38 Zhang F, Wu CX, Zhou ZY, et al. Blue-light-activa-ted nano-TiO2@PDA for highly effective and nondestructive tooth whitening[J]. ACS Biomater Sci Eng, 2018, 4(8): 3072-3077.
39 Omata Y, Lewis JB, Rotenberg S, et al. Intra- and extracellular reactive oxygen species generated by blue light[J]. J Biomed Mater Res A, 2006, 77(3): 470-477.
40 Yoshino F, Yoshida A. Effects of blue-light irradiation during dental treatment[J]. Jpn Dent Sci Rev, 2018, 54(4): 160-168.
41 Li Q, Liu JB, Xu YY, et al. Fast cross-linked hydrogel as a green light-activated photocatalyst for loca-lized biofilm disruption and brush-free tooth white-ning[J]. ACS Appl Mater Interfaces, 2022, 14(25): 28427-28438.
42 Miao XX, Yu F, Liu K, et al. High special surface a-rea and “warm light” responsive ZnO: synthesis mechanism, application and optimization[J]. Bioact Mater, 2022, 7: 181-191.
43 Konopka K, Goslinski T. Photodynamic therapy in dentistry[J]. J Dent Res, 2007, 86(8): 694-707.
44 Zhang H, Zhu YN, Li Y, et al. A bifunctional zwitterion-modified porphyrin for photodynamic nondestructive tooth whitening and biofilm eradication[J]. Adv Funct Materials, 2021, 31(42): 2104799.
45 Gu MJ, Jiang SS, Xu XY, et al. Simultaneous photodynamic eradication of tooth biofilm and tooth whi-tening with an aggregation-induced emission lumi-nogen[J]. Adv Sci, 2022, 9(20): e2106071.
46 Liu H, Chen YK, Mo LQ, et al. “Afterglow” photodynamic therapy based on carbon dots embedded silica nanoparticles for nondestructive teeth white-ning[J]. ACS Nano, 2023, 17(21): 21195-21205.
47 Tu S, Guo Y, Zhang Y, et al. Piezocatalysis and piezo-photocatalysis: catalysts classification and mo-dification strategy, reaction mechanism, and practical application[J]. Adv Funct Mater, 2020, 30(48): 2005158.
48 Chen S, Zhu P, Mao LJ, et al. Piezocatalytic medicine: an emerging frontier using piezoelectric materials for biomedical applications[J]. Adv Mater, 2023, 35(25): e2208256.
49 Wang Y, Wen XR, Jia YM, et al. Piezo-catalysis for nondestructive tooth whitening[J]. Nat Commun, 2020, 11(1): 1328.
50 Samachson J, Dennis J, Fowler R. Uptake of cal-cium, strontium, and barium by the surfaces of bone powder and bone mineral[J]. J Dent Res, 1968, 47(1): 121-126.
51 Deng SH, Zhang Y, Qiao ZS, et al. Hierarchically designed biodegradable polylactide particles with unprecedented piezocatalytic activity and biosafety for tooth whitening[J]. Biomacromolecules, 2023, 24(2): 797-806.
52 Benjakul P, Chuenarrom C. Association of dental enamel loss with the pH and titratable acidity of beverages[J]. J Dent Sci, 2011, 6(3): 129-133.
[1] 汪孟贤,张敏,李继遥. 牙齿漂白剂研究的新进展[J]. 国际口腔医学杂志, 2024, 51(6): 736-741.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 在种植体上制作固定义齿以后下颌骨密度的动态变化[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 陆加梅. 不可复性关节盘移位患者术前张口度与关节镜术后疗效的相关性[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 王昆润. 二甲亚砜和双氯芬酸并用治疗根尖周炎[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[10] 侯锐. 正畸患者釉白斑损害的纵向激光荧光研究[J]. 国际口腔医学杂志, 1999, 26(05): .