国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (6): 736-741.doi: 10.7518/gjkq.2024069
• 综述 • 上一篇
Mengxian Wang(),Min Zhang,Jiyao Li()
摘要:
牙齿漂白是应用漂白剂改善由疾病、年龄增长、食物和饮料染色以及抽烟等原因导致的牙齿结构着色的方法。传统漂白剂主要通过过氧化氢产生活性氧,发生氧化还原反应将有机色素分子转化为浅色化合物发挥漂白功效。但过氧化氢的漂白效果尚需要提升,且存在导致牙齿敏感和釉质脱矿的风险。针对这些问题,近年来在牙齿漂白剂研究方面取得了一些新的进展,本文将围绕非过氧化物类漂白功效成分、过氧化氢催化新方式、减少漂白不良反应新策略等方面进行综述。
中图分类号:
1 | Kim DH, Bae J, Heo JH, et al. Nanoparticles as next-generation tooth-whitening agents: progress and perspectives[J]. ACS Nano, 2022, 16(7): 10042-10065. |
2 | Zhang H, Zhu YN, Li Y, et al. A bifunctional zwitterion-modified porphyrin for photodynamic nondestructive tooth whitening and biofilm eradication[J]. Adv Funct Materials, 2021, 31(42): 2104799. |
3 | Gu MJ, Jiang SS, Xu XY, et al. Simultaneous photodynamic eradication of tooth biofilm and tooth whi-tening with an aggregation-induced emission lumino-gen[J]. Adv Sci, 2022, 9(20): e2106071. |
4 | Gao J, Wang JH, Yue X, et al. Photostable aggregation-induced emission photosensitizer nanoparticle/hyaluronic acid hydrogel for efficient photodynamic tooth bleaching[J]. ACS Appl Nano Mater, 2022, 5(5): 5944-5951. |
5 | Zhang F, Wu CX, Zhou ZY, et al. Blue-light-activa-ted nano-TiO2@PDA for highly effective and nondestructive tooth whitening[J]. ACS Biomater Sci Eng, 2018, 4(8): 3072-3077. |
6 | Kurzmann C, Verheyen J, Coto M, et al. In vitro evaluation of experimental light activated gels for tooth bleaching[J]. Photochem Photobiol Sci, 2019, 18(5): 1009-1019. |
7 | Wang Y, Wen XR, Jia YM, et al. Piezo-catalysis for nondestructive tooth whitening[J]. Nat Commun, 2020, 11(1): 1328. |
8 | Sharma A, Bhardwaj U, Jain D, et al. NaNbO3/ZnO piezocatalyst for non-destructive tooth cleaning and antibacterial activity[J]. iScience, 2022, 25(9): 104915. |
9 | Wang Y, Wang SH, Meng YZ, et al. Pyro-catalysis for tooth whitening via oral temperature fluctuation[J]. Nat Commun, 2022, 13(1): 4419. |
10 | Babot-Marquillas C, Sánchez-Martín MJ, Rodrí‑ guez-Martínez J, et al. Flash tooth whitening: a friendly formulation based on a nanoencapsulated reductant[J]. Colloids Surf B Biointerfaces, 2020, 195: 111241. |
11 | Qin JY, Zeng L, Min W, et al. A bio-safety tooth-whitening composite gels with novel phthalimide peroxy caproic acid[J]. Compos Commun, 2019, 13: 107-111. |
12 | Bizhang M, Domin J, Danesh G, et al. Effectiveness of a new non-hydrogen peroxide bleaching agent after single use-a double-blind placebo-controlled short-term study[J]. J Appl Oral Sci, 2017, 25(5): 575-584. |
13 | Greenwall-Cohen J, Francois P, Silikas N, et al. The safety and efficacy of ‘over the counter’ bleaching products in the UK[J]. Br Dent J, 2019, 226(4): 271-276. |
14 | Yang S, Sui BY, Liu X, et al. A novel tooth blea-ching gel based on peroxymonosulfate/polyphosphates advanced oxidation process: effective white-ning avoiding pulp damage and sensitivity[J]. Chem Eng J, 2022, 429: 132525. |
15 | Taube F, Ylmén R, Shchukarev A, et al. Morphological and chemical characterization of tooth enamel exposed to alkaline agents[J]. J Dent, 2010, 38(1): 72-81. |
16 | Ortecho-Zuta U, de Oliveira Duque CC, Leite ML, et al. Effects of enzymatic activation of bleaching gels on hydrogen peroxide degradation rates, blea-ching effectiveness, and cytotoxicity[J]. Oper Dent, 2019, 44(4): 414-423. |
17 | Martins BV, Dias MF, de Oliveira Ribeiro RA, et al. Innovative strategy for in-office tooth bleaching u-sing violet LED and biopolymers as H2O2 catalysts[J]. Photodiagnosis Photodyn Ther, 2022, 38: 102886. |
18 | Liu M, Huang L, Xu XY, et al. Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining[J]. ACS Nano, 2022, 16(6): 9479-9497. |
19 | de Oliveira Ribeiro RA, Zuta UO, Soares IPM, et al. Manganese oxide increases bleaching efficacy and reduces the cytotoxicity of a 10% hydrogen pero-xide bleaching gel[J]. Clin Oral Investig, 2022, 26(12): 7277-7286. |
20 | Soares DG, Marcomini N, Duque CCO, et al. Increased whitening efficacy and reduced cytotoxicity are achieved by the chemical activation of a highly concentrated hydrogen peroxide bleaching gel[J]. J Appl Oral Sci, 2019, 27: e20180453. |
21 | Cuppini M, Leitune VCB, Souza M, et al. In vitro evaluation of visible light-activated titanium dioxide photocatalysis for in-office dental bleaching[J]. Dent Mater J, 2019, 38(1): 68-74. |
22 | Tanno Y, Otsuki M, Nishimura M, et al. Effect of ultraviolet ray on tooth bleaching using titanium dio-xide photocatalyst[J]. Asian Pac J Dent, 2020, 20(2): 35-40. |
23 | Lee JY, Lee ES, Kang SM, et al. Application of quantitative light-induced fluorescence technology for tooth bleaching treatment and its assessment: an in vitro study[J]. Photodiagnosis Photodyn Ther, 2019, 25: 208-213. |
24 | Mahesh KPO, Zhao ZQ, Liu HY, et al. Highly efficient strategy for photocatalytic tooth bleaching u-sing SiO2/MgO/Fe2O3 nanocomposite spheres[J]. J Taiwan Inst Chem Eng, 2022, 136: 104429. |
25 | Hu XY, Xie L, Xu ZY, et al. Photothermal-enhanced fenton-like catalytic activity of oxygen-deficient nanotitania for efficient and safe tooth whitening[J]. ACS Appl Mater Interfaces, 2021, 13(30): 35315-35327. |
26 | Li Q, Liu JB, Xu YY, et al. Fast cross-linked hydrogel as a green light-activated photocatalyst for loca-lized biofilm disruption and brush-free tooth white-ning[J]. ACS Appl Mater Interfaces, 2022, 14(25): 28427-28438. |
27 | Zhang LJ, Pan J, Zhang J. Integrated two-phase free radical hydrogel: safe, ultra-fast tooth whitening and antibacterial activity[J]. J Mater Sci Technol, 2022, 100: 59-66. |
28 | Kwon SR, Dawson DV, Wertz PW. Time course of potassium nitrate penetration into the pulp cavity and the effect of penetration levels on tooth white-ning efficacy[J]. J Esthet Restor Dent, 2016, 28(): S14-S22. |
29 | Rezende M, Coppla FM, Chemin K, et al. Tooth sensitivity after dental bleaching with a desensitizer-containing and a desensitizer-free bleaching gel: a systematic review and meta-analysis[J]. Oper Dent, 2019, 44(2): E58-E74. |
30 | Wang YN, Gao JX, Jiang T, et al. Evaluation of the efficacy of potassium nitrate and sodium fluoride as desensitizing agents during tooth bleaching treatment-a systematic review and meta-analysis[J]. J Dent, 2015, 43(8): 913-923. |
31 | Nanjundasetty JK, Ashrafulla M. Efficacy of desensitizing agents on postoperative sensitivity follo-wing an in-office vital tooth bleaching: a rando-mized controlled clinical trial[J]. J Conserv Dent, 2016, 19(3): 207-211. |
32 | Oliveira Barros AP, da Silva Pompeu D, Takeuchi EV, et al. Effect of 1.5% potassium oxalate on sensitivity control, color change, and quality of life after at-home tooth whitening: a randomized, placebo-controlled clinical trial[J]. PLoS One, 2022, 17(11): e0277346. |
33 | Martini EC, Parreiras SO, Szesz AL, et al. Blea-ching-induced tooth sensitivity with application of a desensitizing gel before and after in-office blea-ching: a triple-blind randomized clinical trial[J]. Clin Oral Investig, 2020, 24(1): 385-394. |
34 | SKSCF Moura, dos Santos MLV, do Nascimento LA, et al. Design of a thermosensitive ibuprofen-loaded nanogel as smart material applied as anti-inflammatory in tooth bleaching: an in vivo study[J]. J Drug Deliv Sci Technol, 2022, 68: 103123. |
35 | Llena C, Esteve I, Rodríguez-Lozano FJ, et al. The application of casein phosphopeptide and amorphous calcium phosphate with fluoride (CPP-ACPF) for restoring mineral loss after dental bleaching with hydrogen or carbamide peroxide: an in vitro study[J]. Ann Anat, 2019, 225: 48-53. |
36 | Barbosa JG, Benetti F, de Oliveira Gallinari M, et al. Bleaching gel mixed with MI Paste Plus reduces penetration of H2O2 and damage to pulp tissue and maintains bleaching effectiveness[J]. Clin Oral Investig, 2020, 24(3): 1299-1309. |
37 | Felipe Akabane ST, Danelon M, Nunes GP, et al. Evaluation of the aesthetic effect, enamel microhardness and trans-amelodentinal cytotoxicity of a new bleaching agent for professional use containing trimetaphosphate and fluoride[J]. J Mech Behav Biomed Mater, 2021, 114: 104225. |
38 | Pini NIP, Piccelli MR, Vieira-Junior WF, et al. In-office tooth bleaching with chitosan-enriched hydrogen peroxide gels: in vitro results[J]. Clin Oral Investig, 2022, 26(1): 471-479. |
39 | Tam LE, Noroozi A. Effects of direct and indirect bleach on dentin fracture toughness[J]. J Dent Res, 2007, 86(12): 1193-1197. |
40 | Attin T, Schmidlin PR, Wegehaupt F, et al. Influen-ce of study design on the impact of bleaching agents on dental enamel microhardness: a review[J]. Dent Mater, 2009, 25(2): 143-157. |
41 | do Carmo Públio J, Zeczkowski M, Burga-Sánchez J, et al. Influence of different thickeners in at-home tooth bleaching: a randomized clinical trial study[J]. Clin Oral Investig, 2019, 23(5): 2187-2198. |
[1] | 陈梦洁,徐文华,刘青青,康毓聃,刘蓉,朱丽雷. 全身免疫炎症指数与牙周炎患者分级诊断的相关性研究[J]. 国际口腔医学杂志, 2024, 51(6): 706-712. |
[2] | 薛晶. 流动树脂注射充填技术的临床应用[J]. 国际口腔医学杂志, 2024, 51(6): 653-661. |
[3] | 蒋思鑫,施雯锦,罗小波,陈谦明. 儿童病毒性口炎诊断及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 519-531. |
[4] | 焦明阳,周煜萃,蒋正源,刘雨欣,曲柳. 数字化导板技术在牙髓治疗领域的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 550-557. |
[5] | 纪寅飞, 张岚, 黄定明. 微创髓腔通路对根管治疗过程的影响[J]. 国际口腔医学杂志, 2024, 51(5): 558-564. |
[6] | 赖思悦, 李博磊, 程磊. 光热治疗辅助根管冲洗治疗根尖周炎的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 565-571. |
[7] | 张睿,郝婷,吕闻,任双双,刘玉,吴文蕾,孙卫斌. 载黄连素的同轴静电纺丝膜对牙周致病菌及生物膜的抑菌性研究[J]. 国际口腔医学杂志, 2024, 51(5): 596-607. |
[8] | 漆美瑶,祁星颖,周欣奕,谭震,袁泉. 大麻二酚联合米诺环素对牙周炎治疗作用的实验研究[J]. 国际口腔医学杂志, 2024, 51(4): 392-400. |
[9] | 陈梦洁, 刘小乐, 朱丽雷. 牙周炎患者牙周支持治疗对血细胞指标影响的回顾性研究[J]. 国际口腔医学杂志, 2024, 51(4): 401-405. |
[10] | 马玉, 左玉, 刘建华. 抗菌光动力疗法与全身抗菌药物辅助治疗牙周炎疗效比较的Meta分析[J]. 国际口腔医学杂志, 2024, 51(4): 406-415. |
[11] | 温星悦, 赵骏宇, 赵崇钧, 王贵欣, 黄睿洁. 壳聚糖治疗牙周病的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 416-424. |
[12] | 陆慧,郑烨新,赵玮. 牙源性间充质干细胞外泌体在牙髓再生中的作用机制[J]. 国际口腔医学杂志, 2024, 51(4): 467-474. |
[13] | 张波,李霞,杨梦绮. 根管再治疗过程中冲洗剂清除硅酸钙基根管封闭剂效果的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 475-482. |
[14] | 陈新月,潘晓予,杨燕,贾媛媛,陈亮. 卷积神经网络在牙体牙髓病学中的应用进展[J]. 国际口腔医学杂志, 2024, 51(4): 483-488. |
[15] | 张敏, 李继遥. 牙齿漂白技术的临床应用策略[J]. 国际口腔医学杂志, 2024, 51(3): 249-255. |
|