国际口腔医学杂志 ›› 2024, Vol. 51 ›› Issue (6): 736-741.doi: 10.7518/gjkq.2024069

• 综述 • 上一篇    

牙齿漂白剂研究的新进展

汪孟贤(),张敏,李继遥()   

  1. 口腔疾病防治全国重点实验室 国家口腔医学中心 国家口腔疾病临床医学研究中心四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2023-12-25 修回日期:2024-05-07 出版日期:2024-11-01 发布日期:2024-11-04
  • 通讯作者: 李继遥
  • 作者简介:汪孟贤,硕士,Email:mengxian007@126.com
  • 基金资助:
    四川省科技厅重点研发项目(2023YFS0048)

Developments in tooth bleaching agents

Mengxian Wang(),Min Zhang,Jiyao Li()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-12-25 Revised:2024-05-07 Online:2024-11-01 Published:2024-11-04
  • Contact: Jiyao Li
  • Supported by:
    Key Research and Development Project of Science and Technology Department of Sichuan Province(2023YFS0048)

摘要:

牙齿漂白是应用漂白剂改善由疾病、年龄增长、食物和饮料染色以及抽烟等原因导致的牙齿结构着色的方法。传统漂白剂主要通过过氧化氢产生活性氧,发生氧化还原反应将有机色素分子转化为浅色化合物发挥漂白功效。但过氧化氢的漂白效果尚需要提升,且存在导致牙齿敏感和釉质脱矿的风险。针对这些问题,近年来在牙齿漂白剂研究方面取得了一些新的进展,本文将围绕非过氧化物类漂白功效成分、过氧化氢催化新方式、减少漂白不良反应新策略等方面进行综述。

关键词: 牙齿漂白剂, 光催化剂, 牙髓刺激

Abstract:

Tooth bleaching is the application of bleaching agents that mitigate tooth discoloration caused by a disease, aging, food and beverage staining, and smoking. Conventional bleaching agents mainly produce reactive oxygen species from hydrogen peroxide, which undergoes a redox reaction that converts organic pigment molecules into light-colored compounds. However, the bleaching effect of hydrogen peroxide needs to be improved, and the bleaching process may increase tooth sensitivity and cause enamel demineralization. Nevertheless, research on how to mitigate these effects with dental bleaching agents have advanced in recent years, and this paper reviews components with non-peroxide bleaching efficacy, novel methods for hydrogen peroxide catalysis, and strategies for mitigating the adverse reactions of bleaching.

Key words: tooth bleaching agent, photocatalyst, pulp stimulation

中图分类号: 

  • R781
1 Kim DH, Bae J, Heo JH, et al. Nanoparticles as next-generation tooth-whitening agents: progress and perspectives[J]. ACS Nano, 2022, 16(7): 10042-10065.
2 Zhang H, Zhu YN, Li Y, et al. A bifunctional zwitterion-modified porphyrin for photodynamic nondestructive tooth whitening and biofilm eradication[J]. Adv Funct Materials, 2021, 31(42): 2104799.
3 Gu MJ, Jiang SS, Xu XY, et al. Simultaneous photodynamic eradication of tooth biofilm and tooth whi-tening with an aggregation-induced emission lumino-gen[J]. Adv Sci, 2022, 9(20): e2106071.
4 Gao J, Wang JH, Yue X, et al. Photostable aggregation-induced emission photosensitizer nanoparticle/hyaluronic acid hydrogel for efficient photodynamic tooth bleaching[J]. ACS Appl Nano Mater, 2022, 5(5): 5944-5951.
5 Zhang F, Wu CX, Zhou ZY, et al. Blue-light-activa-ted nano-TiO2@PDA for highly effective and nondestructive tooth whitening[J]. ACS Biomater Sci Eng, 2018, 4(8): 3072-3077.
6 Kurzmann C, Verheyen J, Coto M, et al. In vitro evaluation of experimental light activated gels for tooth bleaching[J]. Photochem Photobiol Sci, 2019, 18(5): 1009-1019.
7 Wang Y, Wen XR, Jia YM, et al. Piezo-catalysis for nondestructive tooth whitening[J]. Nat Commun, 2020, 11(1): 1328.
8 Sharma A, Bhardwaj U, Jain D, et al. NaNbO3/ZnO piezocatalyst for non-destructive tooth cleaning and antibacterial activity[J]. iScience, 2022, 25(9): 104915.
9 Wang Y, Wang SH, Meng YZ, et al. Pyro-catalysis for tooth whitening via oral temperature fluctuation[J]. Nat Commun, 2022, 13(1): 4419.
10 Babot-Marquillas C, Sánchez-Martín MJ, Rodrí‑ guez-Martínez J, et al. Flash tooth whitening: a friendly formulation based on a nanoencapsulated reductant[J]. Colloids Surf B Biointerfaces, 2020, 195: 111241.
11 Qin JY, Zeng L, Min W, et al. A bio-safety tooth-whitening composite gels with novel phthalimide peroxy caproic acid[J]. Compos Commun, 2019, 13: 107-111.
12 Bizhang M, Domin J, Danesh G, et al. Effectiveness of a new non-hydrogen peroxide bleaching agent after single use-a double-blind placebo-controlled short-term study[J]. J Appl Oral Sci, 2017, 25(5): 575-584.
13 Greenwall-Cohen J, Francois P, Silikas N, et al. The safety and efficacy of ‘over the counter’ bleaching products in the UK[J]. Br Dent J, 2019, 226(4): 271-276.
14 Yang S, Sui BY, Liu X, et al. A novel tooth blea-ching gel based on peroxymonosulfate/polyphosphates advanced oxidation process: effective white-ning avoiding pulp damage and sensitivity[J]. Chem Eng J, 2022, 429: 132525.
15 Taube F, Ylmén R, Shchukarev A, et al. Morphological and chemical characterization of tooth enamel exposed to alkaline agents[J]. J Dent, 2010, 38(1): 72-81.
16 Ortecho-Zuta U, de Oliveira Duque CC, Leite ML, et al. Effects of enzymatic activation of bleaching gels on hydrogen peroxide degradation rates, blea-ching effectiveness, and cytotoxicity[J]. Oper Dent, 2019, 44(4): 414-423.
17 Martins BV, Dias MF, de Oliveira Ribeiro RA, et al. Innovative strategy for in-office tooth bleaching u-sing violet LED and biopolymers as H2O2 catalysts[J]. Photodiagnosis Photodyn Ther, 2022, 38: 102886.
18 Liu M, Huang L, Xu XY, et al. Copper doped carbon dots for addressing bacterial biofilm formation, wound infection, and tooth staining[J]. ACS Nano, 2022, 16(6): 9479-9497.
19 de Oliveira Ribeiro RA, Zuta UO, Soares IPM, et al. Manganese oxide increases bleaching efficacy and reduces the cytotoxicity of a 10% hydrogen pero-xide bleaching gel[J]. Clin Oral Investig, 2022, 26(12): 7277-7286.
20 Soares DG, Marcomini N, Duque CCO, et al. Increased whitening efficacy and reduced cytotoxicity are achieved by the chemical activation of a highly concentrated hydrogen peroxide bleaching gel[J]. J Appl Oral Sci, 2019, 27: e20180453.
21 Cuppini M, Leitune VCB, Souza M, et al. In vitro evaluation of visible light-activated titanium dioxide photocatalysis for in-office dental bleaching[J]. Dent Mater J, 2019, 38(1): 68-74.
22 Tanno Y, Otsuki M, Nishimura M, et al. Effect of ultraviolet ray on tooth bleaching using titanium dio-xide photocatalyst[J]. Asian Pac J Dent, 2020, 20(2): 35-40.
23 Lee JY, Lee ES, Kang SM, et al. Application of quantitative light-induced fluorescence technology for tooth bleaching treatment and its assessment: an in vitro study[J]. Photodiagnosis Photodyn Ther, 2019, 25: 208-213.
24 Mahesh KPO, Zhao ZQ, Liu HY, et al. Highly efficient strategy for photocatalytic tooth bleaching u-sing SiO2/MgO/Fe2O3 nanocomposite spheres[J]. J Taiwan Inst Chem Eng, 2022, 136: 104429.
25 Hu XY, Xie L, Xu ZY, et al. Photothermal-enhanced fenton-like catalytic activity of oxygen-deficient nanotitania for efficient and safe tooth whitening[J]. ACS Appl Mater Interfaces, 2021, 13(30): 35315-35327.
26 Li Q, Liu JB, Xu YY, et al. Fast cross-linked hydrogel as a green light-activated photocatalyst for loca-lized biofilm disruption and brush-free tooth white-ning[J]. ACS Appl Mater Interfaces, 2022, 14(25): 28427-28438.
27 Zhang LJ, Pan J, Zhang J. Integrated two-phase free radical hydrogel: safe, ultra-fast tooth whitening and antibacterial activity[J]. J Mater Sci Technol, 2022, 100: 59-66.
28 Kwon SR, Dawson DV, Wertz PW. Time course of potassium nitrate penetration into the pulp cavity and the effect of penetration levels on tooth white-ning efficacy[J]. J Esthet Restor Dent, 2016, 28(): S14-S22.
29 Rezende M, Coppla FM, Chemin K, et al. Tooth sensitivity after dental bleaching with a desensitizer-containing and a desensitizer-free bleaching gel: a systematic review and meta-analysis[J]. Oper Dent, 2019, 44(2): E58-E74.
30 Wang YN, Gao JX, Jiang T, et al. Evaluation of the efficacy of potassium nitrate and sodium fluoride as desensitizing agents during tooth bleaching treatment-a systematic review and meta-analysis[J]. J Dent, 2015, 43(8): 913-923.
31 Nanjundasetty JK, Ashrafulla M. Efficacy of desensitizing agents on postoperative sensitivity follo-wing an in-office vital tooth bleaching: a rando-mized controlled clinical trial[J]. J Conserv Dent, 2016, 19(3): 207-211.
32 Oliveira Barros AP, da Silva Pompeu D, Takeuchi EV, et al. Effect of 1.5% potassium oxalate on sensitivity control, color change, and quality of life after at-home tooth whitening: a randomized, placebo-controlled clinical trial[J]. PLoS One, 2022, 17(11): e0277346.
33 Martini EC, Parreiras SO, Szesz AL, et al. Blea-ching-induced tooth sensitivity with application of a desensitizing gel before and after in-office blea-ching: a triple-blind randomized clinical trial[J]. Clin Oral Investig, 2020, 24(1): 385-394.
34 SKSCF Moura, dos Santos MLV, do Nascimento LA, et al. Design of a thermosensitive ibuprofen-loaded nanogel as smart material applied as anti-inflammatory in tooth bleaching: an in vivo study[J]. J Drug Deliv Sci Technol, 2022, 68: 103123.
35 Llena C, Esteve I, Rodríguez-Lozano FJ, et al. The application of casein phosphopeptide and amorphous calcium phosphate with fluoride (CPP-ACPF) for restoring mineral loss after dental bleaching with hydrogen or carbamide peroxide: an in vitro study[J]. Ann Anat, 2019, 225: 48-53.
36 Barbosa JG, Benetti F, de Oliveira Gallinari M, et al. Bleaching gel mixed with MI Paste Plus reduces penetration of H2O2 and damage to pulp tissue and maintains bleaching effectiveness[J]. Clin Oral Investig, 2020, 24(3): 1299-1309.
37 Felipe Akabane ST, Danelon M, Nunes GP, et al. Evaluation of the aesthetic effect, enamel microhardness and trans-amelodentinal cytotoxicity of a new bleaching agent for professional use containing trimetaphosphate and fluoride[J]. J Mech Behav Biomed Mater, 2021, 114: 104225.
38 Pini NIP, Piccelli MR, Vieira-Junior WF, et al. In-office tooth bleaching with chitosan-enriched hydrogen peroxide gels: in vitro results[J]. Clin Oral Investig, 2022, 26(1): 471-479.
39 Tam LE, Noroozi A. Effects of direct and indirect bleach on dentin fracture toughness[J]. J Dent Res, 2007, 86(12): 1193-1197.
40 Attin T, Schmidlin PR, Wegehaupt F, et al. Influen-ce of study design on the impact of bleaching agents on dental enamel microhardness: a review[J]. Dent Mater, 2009, 25(2): 143-157.
41 do Carmo Públio J, Zeczkowski M, Burga-Sánchez J, et al. Influence of different thickeners in at-home tooth bleaching: a randomized clinical trial study[J]. Clin Oral Investig, 2019, 23(5): 2187-2198.
[1] 陈梦洁,徐文华,刘青青,康毓聃,刘蓉,朱丽雷. 全身免疫炎症指数与牙周炎患者分级诊断的相关性研究[J]. 国际口腔医学杂志, 2024, 51(6): 706-712.
[2] 薛晶. 流动树脂注射充填技术的临床应用[J]. 国际口腔医学杂志, 2024, 51(6): 653-661.
[3] 蒋思鑫,施雯锦,罗小波,陈谦明. 儿童病毒性口炎诊断及治疗的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 519-531.
[4] 焦明阳,周煜萃,蒋正源,刘雨欣,曲柳. 数字化导板技术在牙髓治疗领域的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 550-557.
[5] 纪寅飞, 张岚, 黄定明. 微创髓腔通路对根管治疗过程的影响[J]. 国际口腔医学杂志, 2024, 51(5): 558-564.
[6] 赖思悦, 李博磊, 程磊. 光热治疗辅助根管冲洗治疗根尖周炎的研究进展[J]. 国际口腔医学杂志, 2024, 51(5): 565-571.
[7] 张睿,郝婷,吕闻,任双双,刘玉,吴文蕾,孙卫斌. 载黄连素的同轴静电纺丝膜对牙周致病菌及生物膜的抑菌性研究[J]. 国际口腔医学杂志, 2024, 51(5): 596-607.
[8] 漆美瑶,祁星颖,周欣奕,谭震,袁泉. 大麻二酚联合米诺环素对牙周炎治疗作用的实验研究[J]. 国际口腔医学杂志, 2024, 51(4): 392-400.
[9] 陈梦洁, 刘小乐, 朱丽雷. 牙周炎患者牙周支持治疗对血细胞指标影响的回顾性研究[J]. 国际口腔医学杂志, 2024, 51(4): 401-405.
[10] 马玉, 左玉, 刘建华. 抗菌光动力疗法与全身抗菌药物辅助治疗牙周炎疗效比较的Meta分析[J]. 国际口腔医学杂志, 2024, 51(4): 406-415.
[11] 温星悦, 赵骏宇, 赵崇钧, 王贵欣, 黄睿洁. 壳聚糖治疗牙周病的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 416-424.
[12] 陆慧,郑烨新,赵玮. 牙源性间充质干细胞外泌体在牙髓再生中的作用机制[J]. 国际口腔医学杂志, 2024, 51(4): 467-474.
[13] 张波,李霞,杨梦绮. 根管再治疗过程中冲洗剂清除硅酸钙基根管封闭剂效果的研究进展[J]. 国际口腔医学杂志, 2024, 51(4): 475-482.
[14] 陈新月,潘晓予,杨燕,贾媛媛,陈亮. 卷积神经网络在牙体牙髓病学中的应用进展[J]. 国际口腔医学杂志, 2024, 51(4): 483-488.
[15] 张敏, 李继遥. 牙齿漂白技术的临床应用策略[J]. 国际口腔医学杂志, 2024, 51(3): 249-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!