Int J Stomatol ›› 2022, Vol. 49 ›› Issue (3): 362-366.doi: 10.7518/gjkq.2022037

• Reviews • Previous Articles     Next Articles

Research progress on measuring methods of tooth movement under functional load

Zhao Zhe(),Wang Fu,Zheng Xiuli,An Na,Chen Jihua.()   

  1. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Di-seases & Shaanxi Key Laboratory of Oral Diseases & Dept. of Prosthodontics, School of Stomatology, Air Force Military Medical University, Xi’an 710032, China
  • Received:2021-08-15 Revised:2021-12-16 Online:2022-05-01 Published:2022-05-09
  • Contact: Jihua. Chen E-mail:17839927278@163.com;jhchen@fmmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(82071169);Project National Clinical Research Center for Oral Diseases(LCB202005)

Abstract:

Tooth movement under functional load is a basic physiological phenomenon in the process of mastication, which plays an important role in maintaining the force balance of dental arch and avoiding food impaction and tooth fracture. In recent years, with the continuous progress of research and the continuous application of new technologies and methods, the research on tooth movement under functional load is deepening, and its measurement method is moving closer to the direction of high precision and digitalisation. This paper reviews the related literature in recent years on the physiological basis, influencing factors, measurement methods and clinical significance of tooth movement under functional load to provide reference for an objective and comprehensive description of tooth movement under mastication.

Key words: tooth movement, functional load, digital technique, measurement

CLC Number: 

  • R 783.5

TrendMD: 
1 Keilig L, Drolshagen M, Tran KL, et al. In vivo measurements and numerical analysis of the biomechanical characteristics of the human periodontal ligament[J]. Ann Anat, 2016, 206: 80-88.
2 Naveh GR, Lev-Tov Chattah N, Zaslansky P, et al. Tooth-PDL-bone complex: response to compressive loads encountered during mastication-a review[J]. Arch Oral Biol, 2012, 57(12): 1575-1584.
3 Pei DD, Hu XY, Jin CX, et al. Energy storage and dissipation of human periodontal ligament during mastication movement[J]. ACS Biomater Sci Eng, 2018, 4(12): 4028-4035.
4 de Jong T, Bakker AD, Everts V, et al. The intricate anatomy of the periodontal ligament and its development: lessons for periodontal regeneration[J]. J Periodontal Res, 2017, 52(6): 965-974.
5 Dorow C, Krstin N, Sander FG. Experiments to determine the material properties of the periodontal ligament[J]. J Orofac Orthop, 2002, 63(2): 94-104.
6 Sinescu C, Duma VF, Dodenciu D, et al. Mechanical properties of the periodontal system and of dental constructs deduced from the free response of the tooth[J]. J Healthc Eng, 2018, 2018:4609264.
7 Ben-Zvi Y, Maria R, Pierantoni M, et al. Response of the tooth-periodontal ligament-bone complex to load: a microCT study of the minipig molar[J]. J Struct Biol, 2019, 205(2): 155-162.
8 Morgenthal A, Zaslansky P, Fleck C. Cementum thickening leads to lower whole tooth mobility and reduced root stresses: an in silico study on aging effects during mastication[J]. J Struct Biol, 2021, 213(2): 107726.
9 Jang AT, Merkle AP, Fahey KP, et al. Multiscale biomechanical responses of adapted bone-periodontal ligament-tooth fibrous joints[J]. Bone, 2015, 81: 196-207.
10 Ishihara H. Influence of occlusal contacts on tooth displacement[J]. Kokubyo Gakkai Zasshi, 2000, 67(4): 310-321.
11 Nikolaus A, Currey JD, Lindtner T, et al. Importance of the variable periodontal ligament geometry for whole tooth mechanical function: a validated numerical study[J]. J Mech Behav Biomed Mater, 2017, 67: 61-73.
12 Kim YG, Lee SM, Bae S, et al. Effect of aging on homeostasis in the soft tissue of the periodontium: a narrative review[J]. J Pers Med, 2021, 11(1): 58.
13 Wu JL, Liu YF, Li BX, et al. Numerical simulation of optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar bas-ed on biomechanical responses of periodontal ligaments: a case study[J]. Clin Oral Investig, 2021, 25(3): 1569-1577.
14 Bouton A, Simon Y, Goussard F, et al. New finite element study protocol: clinical simulation of ortho-dontic tooth movement[J]. Int Orthod, 2017, 15(2): 165-179.
15 Picton DC. Tilting movements of teeth during biting[J]. Arch Oral Biol, 1962, 7: 151-159.
16 Behrend DA. A method of studying patterns of tooth displacement in simulated chewing cycles in man[J]. Arch Oral Biol, 1974, 19(1): 23-27.
17 Siebert G. Recent results concerning physiological tooth movement and anterior guidance[J]. J Oral Rehabil, 1981, 8(6): 479-493.
18 Parfitt GJ. Measurement of the physiological mobility of individual teeth in an axial direction[J]. J Dent Res, 1960, 39: 608-618.
19 Salamati A, Chen J, Herring SW, et al. Functional tooth mobility in young pigs[J]. J Biomech, 2020, 104: 109716.
20 Boldt J, Knapp W, Proff P, et al. Measurement of tooth and implant mobility under physiological loading conditions[J]. Ann Anat, 2012, 194(2): 185-189.
21 Yomoda S, Hisano M, Amemiya K, et al. The interrelationship between bolus breakdown, mandibular first molar displacement and jaw movement during mastication[J]. J Oral Rehabil, 2004, 31(2): 99-109.
22 Provatidis CG. A comparative FEM-study of tooth mobility using isotropic and anisotropic models of the periodontal ligament. Finite element method[J]. Med Eng Phys, 2000, 22(5): 359-370.
23 Karimi A, Razaghi R, Biglari H, et al. Finite element modeling of the periodontal ligament under a realistic kinetic loading of the jaw system[J]. Saudi Dent J, 2020, 32(7): 349-356.
24 Kasahara K. Observations of interproximal contact relationship during function[J]. Kokubyo Gakkai Zasshi, 1999, 66(4): 370-381.
25 李琳琳, 陈虎, 李伟伟, 等. 正常𬌗力咬合状态下后牙移动的口内三维扫描测量和分析[J].中华口腔医学杂志, 2020, 55(10): 743-749.
Li LL, Chen H, Li WW, et al. Investigation of posterior teeth displacement under normal bite force by an intraoral scanner[J]. Chin J Stomatol, 2020, 55(10): 743-749
26 曹悦, 陈俊锴, 赵一姣, 等. 口内三维扫描技术临床应用精度的研究进展[J].中华口腔医学杂志, 2020, 55(3): 201-205.
Cao Y, Chen JK, Zhao YJ, et al. Research and deve-lopment of clinical application accuracy of intraoral three-dimensional scanning technology[J]. Chin J Sto-matol, 2020, 55(3): 201-205.
27 Wu JL, Liu YF, Li BX, et al. Numerical simulation of optimal range of rotational moment for the mandibular lateral incisor, canine and first premolar based on biomechanical responses of periodontal ligaments: a case study[J]. Clin Oral Investig, 2021, 25(3): 1569-1577.
28 Keilig L, Goedecke J, Bourauel C, et al. Increased tooth mobility after fixed orthodontic appliance treatment can be selectively utilized for case refinement via positioner therapy-a pilot study[J]. BMC Oral Health, 2020, 20(1): 114.
29 Gupta M, Madhok K, Kulshrestha R, et al. Determination of stress distribution on periodontal ligament and alveolar bone by various tooth movements-a 3D FEM study[J]. J Oral Biol Craniofac Res, 2020, 10(4): 758-763.
30 Jiang N, Guo WH, Chen M, et al. Periodontal ligament and alveolar bone in health and adaptation: tooth movement[J]. Front Oral Biol, 2016, 18: 1-8.
31 Cattaneo PM, Cornelis MA. Orthodontic tooth movement studied by finite element analysis: an update. What can we learn from these simulations[J]. Curr Osteoporos Rep, 2021, 19(2): 175-181.
32 卫敏捷, 郭巧玲, 刘艳梅, 等. 种植固定义齿与天然邻牙食物嵌塞的影响因素分析[J]. 中华老年口腔医学杂志, 2021, 19(1): 31-34.
Wei MJ, Guo QL, Liu YM, et al. Analysis of influencing factors of food impaction between implant fixed denture and natural adjacent tooth[J]. Chin J Geriatr Dent, 2021, 19(1): 31-34.
33 Robinson D, Aguilar L, Gatti A, et al. Load response of the natural tooth and dental implant: a comparative biomechanics study[J]. J Adv Prosthodont, 2019, 11(3): 169-178.
34 Dörfer CE, von Bethlenfalvy ER, Staehle HJ, et al. Factors influencing proximal dental contact strengths [J]. Eur J Oral Sci, 2000, 108(5): 368-377.
35 王茂夏, 戴冠宇, 孟玉坤. 垂直型食物嵌塞的机制探究[J]. 国际口腔医学杂志, 2018, 45(2): 245-248.
Wang MX, Dai GY, Meng YK. Mechanism of vertical food impaction[J]. Int J Stomatol, 2018, 45(2): 245-248.
36 黄敏, 罗云, 王敏. 相邻牙间的邻面接触与食物嵌塞的关系[J]. 国际口腔医学杂志, 2016, 43(3): 303-308.
Huang M, Luo Y, Wang M. Relationship between the interproximal interface of adjacent teeth and food impaction[J]. Int J Stomatol, 2016, 43(3): 303-308.
[1] Huang Yuanhong,Peng Xian,Zhou Xuedong.. Progress in research into the effect of Rhizoma Drynariae on the treatment of bone-related diseases in the oral cavity [J]. Int J Stomatol, 2023, 50(6): 679-685.
[2] Guo Ziyuan,Chang Xiao,Han Kaifang,Zhang Xizhong. Low-level laser therapy for acceleration of fixed orthodontic tooth movement: a systematic review and meta-analysis [J]. Int J Stomatol, 2022, 49(2): 163-172.
[3] Shi Danni,Yang Xin,Wu Jianyong. Research progress of reference coordinate system for three-dimensional cephalometric based on cone beam computed tomography [J]. Int J Stomatol, 2021, 48(4): 398-404.
[4] Yin Yuanyuan,Ma Huayu,Li Xinyi,Xu Jingchen,Liu Ting,Chen Song,He Shushu. Expression of autophagy related genes in mice periodontal tissue during orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(6): 627-634.
[5] Zhao Yujie,Guan Xiaoyan,Li Xiaolan,Chen Qijun,Wang Qian,Liu Jianguo. Research progress on macrophage polarization involved in the regulation of orthodontic tooth movement [J]. Int J Stomatol, 2020, 47(4): 478-483.
[6] Li Yeping,Zheng Qian,Yin Heng,Guo Chunli,Shi Bing,Li Chenghao. Exploration on nasal objective measurements affecting subjective evaluation of the secondary reconstruction of unilateral cleft lip nasal deformity [J]. Int J Stomatol, 2019, 46(4): 407-412.
[7] Ya Yang,Peng Chen,Hongwei Dai,Lin Zhang. Change in expression of transformation growth factor-β/Smad signalling pathway-related proteins in epithelial rests of Malassez during orthodontic tooth movement in rats [J]. Int J Stomatol, 2019, 46(3): 270-276.
[8] Manying Huang,Yun Fu. Gingival biotype and assessment methods [J]. Inter J Stomatol, 2019, 46(2): 171-176.
[9] Lingling Liu,Shutai Liu. Measurement methods and relevant factors of the soft tissue thickness in the palatal masticatory mucosa of maxillary [J]. Inter J Stomatol, 2019, 46(2): 234-237.
[10] Zhu Chenyou, Deng Jia, Gan Zhoujie, Liu Liu, Wang Tianlu, Cao Cong, Qu Yili. The application of cone-beam computed tomography in implant surgery of maxillary anterior teeth area [J]. Inter J Stomatol, 2018, 45(1): 59-63.
[11] Xu Xun, Huang Jiansheng, Gan Zekun, Luo Zhen.. Measurement of the maxillary first molar area palatal side bone plate by cone-beam computer tomography and its clinical significance [J]. Inter J Stomatol, 2017, 44(6): 686-690.
[12] Chen Jing, Huang Xiaofeng.. Development of laser applications in orthodontics [J]. Inter J Stomatol, 2017, 44(6): 712-716.
[13] Wang Tong, Wan Qianbing. Research progress on root surface area measurement [J]. Inter J Stomatol, 2016, 43(4): 490-494.
[14] Xie Liuping, Zhang Weibing. The application of three-dimensional stereophotography in facial soft tissues [J]. Inter J Stomatol, 2016, 43(2): 201-206.
[15] Hua Xiaochuan, Yang Ping, Zhou Zhi, Liu Xiaojun. Application of osteocalcin and low-energy laser in the acceleration of experimental rat tooth movement [J]. Inter J Stomatol, 2015, 42(1): 16-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[8] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[9] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[10] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .