Inter J Stomatol ›› 2018, Vol. 45 ›› Issue (5): 516-521.doi: 10.7518/gjkq.2018.05.004

• Implantology • Previous Articles     Next Articles

Research progress on oral implant materials with antimicrobial properties

Mengqi Liu,Kuo Gai,Li Jiang()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-09-03 Revised:2018-04-26 Online:2018-09-01 Published:2018-09-20
  • Contact: Li Jiang E-mail:echojiang999@gmail.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(31200720);Sichuan Science and Technology Program(2016FZ0069)

Abstract:

Dental implants have attracted widespread attention because of their many advantages, which include comfort, beauty, stability, reliability, and no damage to adjacent teeth. However, unlike natural teeth, dental implants usually present weak resistance to bacterial infection due to their lack of a complete immune defense system. Peri-implantitis is one of the major causes of implant failure. To decrease the incidence of oral implant-related infection and complications, enhancing the antibacterial properties of the implants is important. This paper reviews the research status of dental implant materials with antibacterial properties. It summarizes the characteristics and antibacterial effects of various methods from the aspects of material composition, surface modification, and antibacterial coating. This work seeks to provide a reference for future research and the clinical applications of oral implant materials with antibacterial properties.

Key words: dental implant, antibacterial property, bacterial adhesion, material composition, surface modification, antibacterial coating

CLC Number: 

  • R783.1

TrendMD: 
[1] Klinge B, Meyle J , Working Group 2. Peri-implant tissue destruction. The Third EAO Consensus Con-ference 2012[J]. Clin Oral Implants Res, 2012,23(Suppl 6):108-110.
doi: 10.1111/j.1600-0501.2012.02550.x pmid: 23062134
[2] De Giglio E, Cafagna D, Cometa S , et al. An innova-tive, easily fabricated, silver nanoparticle-based ti-tanium implant coating: development and analytical characterization[J]. Anal Bioanal Chem, 2013,405(2/3):805-816.
doi: 10.1007/s00216-012-6293-z
[3] Al-Radha AS, Dymock D, Younes C , et al. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion[J]. J Dent, 2012,40(2):146-153.
doi: 10.1016/j.jdent.2011.12.006
[4] Roehling S, Astasov-Frauenhoffer M , Hauser-Ger-spach I, et al. In vitro biofilm formation on titanium and zirconia implant surfaces[J]. J Periodontol, 2017,88(3):298-307.
doi: 10.1902/jop.2016.160245 pmid: 27712464
[5] Mei L, van der Mei HC, Ren YJ , et al. Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film[J]. Lan-gmuir, 2009,25(11):6227-6231.
[6] Egawa M, Miura T, Kato T , et al. In vitro adherence of periodontopathic bacteria to zirconia and titanium surfaces[J]. Dent Mater J, 2013,32(1):101-106.
doi: 10.4012/dmj.2012-156 pmid: 23370877
[7] Lorenzetti M, Dogša I, Stošicki T , et al. The in-fluence of surface modification on bacterial adhesion to titanium-based substrates[J]. ACS Appl Mater Interfaces, 2015,7(3):1644-1651.
doi: 10.1021/am507148n pmid: 25543452
[8] Perera-Costa D, Bruque JM, González-Martín ML , et al. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns[J]. Langmuir, 2014,30(16):4633-4641.
doi: 10.1021/la5001057
[9] Zhang XX, Wang L, Levänen E , Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Advances, 2013,3(30):12003-12020.
doi: 10.1039/c3ra40497h
[10] Pogodin S, Hasan J, Baulin VA , et al. Biophysical model of bacterial cell interactions with nanopat-terned cicada wing surfaces[J]. Biophys J, 2013,104(4):835-840.
doi: 10.1016/j.bpj.2012.12.046 pmid: 23442962
[11] Perni S, Prokopovich P , Micropatterning with conical features can control bacterial adhesion on silicone[J]. Soft Matter, 2013,9(6):1844-1851.
doi: 10.1039/c2sm26828k
[12] Chebolu A, Laha B, Ghosh M , et al. Investigation on bacterial adhesion and colonisation resistance over laser-machined micro patterned surfaces[J]. Micro Nano Lett, 2013,8(6):280-283.
doi: 10.1049/mnl.2013.0109
[13] Scacchi M , The development of the ITI Dental Im-plant System. Part 1: a review of the literature[J]. Clin Oral Implants Res, 2000,11(Suppl 1):8-21.
doi: 10.1034/j.1600-0501.2000.011S1008.x
[14] Dorkhan M, Hall J, Uvdal P , et al. Crystalline ana-tase-rich titanium can reduce adherence of oral Streptococci[J]. Biofouling, 2014,30(6):751-759.
doi: 10.1080/08927014.2014.922962 pmid: 24881929
[15] de Avila ED, Lima B, Sekiya T , et al. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material[J]. Biomaterials, 2015,67:84-92.
doi: 10.1016/j.biomaterials.2015.07.030
[16] Chan CW, Carson L, Smith GC , et al. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering[J]. Appl Surf Sci, 2017,404:67-81.
doi: 10.1016/j.apsusc.2017.01.233
[17] Krasowska A, Sigler K , How microorganisms use hydrophobicity and what does this mean for human needs[J]. Front Cell Infect Microbiol, 2014,4:112.
doi: 10.3389/fcimb.2014.00112 pmid: 4137226
[18] Kuehl R, Brunetto PS, Woischnig AK , et al. Preven-ting implant-associated infections by silver coating[J]. Antimicrob Agents Chemother, 2016,60(4):2467-2475.
doi: 10.1128/AAC.02934-15 pmid: 26883700
[19] Godoy-Gallardo M, Manzanares-Céspedes MC, Sevilla P , et al. Evaluation of bone loss in antibacterial coated dental implants: an experimental study in dogs[J]. Mater Sci Eng C Mater Biol Appl, 2016,69:538-545.
doi: 10.1016/j.msec.2016.07.020 pmid: 27612745
[20] Kvítek L, Panáček A, Soukupová J , et al. Effect of surfactants and polymers on stability and anti-bacterial activity of silver nanoparticles (NPs)[J]. J Phys Chem C, 2008,112(15):5825-5834.
doi: 10.1021/jp711616v
[21] Memarzadeh K, Sharili AS, Huang J , et al. Nanopar-ticulate zinc oxide as a coating material for orthopedic and dental implants[J]. J Biomed Mater Res A, 2015,103(3):981-989.
doi: 10.1002/jbm.a.35241 pmid: 24862288
[22] Dybowska-Sarapuk Ł, Kotela A, Krzemiński J , et al. Graphene nanolayers as a new method for bacterial biofilm prevention: preliminary results[J]. J AOAC Int, 2017,100(4):900-904.
doi: 10.5740/jaoacint.17-0164 pmid: 28623661
[23] Godoy-Gallardo M, Guillem-Marti J, Sevilla P , et al. Anhydride-functional silane immobilized onto ti-tanium surfaces induces osteoblast cell differentia-tion and reduces bacterial adhesion and biofilm formation[J]. Mater Sci Eng C Mater Biol Appl, 2016,59:524-532.
doi: 10.1016/j.msec.2015.10.051
[24] Gosau M, Haupt M, Thude S , et al. Antimicrobial effect and biocompatibility of novel metallic nano-crystalline implant coatings[J]. J Biomed Mater Res Part B Appl Biomater, 2016,104(8):1571-1579.
[25] Ferraris S, Spriano S , Antibacterial titanium surfaces for medical implants[J]. Mater Sci Eng C Mater Biol Appl, 2016,61:965-978.
doi: 10.1016/j.msec.2015.12.062 pmid: 26838926
[26] He S, Zhou P, Wang LX , et al. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant[J]. J R Soc Interface, 2014,11(95):20140169.
doi: 10.1098/rsif.2014.0169
[27] Massa MA, Covarrubias C, Bittner M , et al. Synjournal of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles[J]. Mater Sci Eng C Mater Biol Appl, 2014,45:146-153.
doi: 10.1016/j.msec.2014.08.057
[28] Govindharajulu JP, Chen X, Li YP , et al. Chitosan-recombinamer layer-by-layer coatings for multifunc-tional implants[J]. Int J Mol Sci, 2017,18(2):369.
doi: 10.3390/ijms18020369 pmid: 5343904
[29] Lv HB, Chen Z, Yang XP , et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation[J]. J Dent, 2014,42(11):1464-1472.
doi: 10.1016/j.jdent.2014.06.003
[30] Costa EM, Silva S, Tavaria FK , et al. Study of the effects of chitosan upon Streptococcus mutans ad-herence and biofilm formation[J]. Anaerobe, 2013,20:27-31.
doi: 10.1016/j.anaerobe.2013.02.002 pmid: 23454497
[31] Junter GA, Thébault P, Lebrun L , Polysaccharide-based antibiofilm surfaces[J]. Acta Biomater, 2016,30:13-25.
doi: 10.1016/j.actbio.2015.11.010 pmid: 26555378
[32] Hoven VP, Tangpasuthadol V, Angkitpaiboon Y , et al. Surface-charged chitosan: preparation and protein adsorption[J]. Carbohydr Polym, 2007,68(1):44-53.
doi: 10.1016/j.carbpol.2006.07.008
[33] Münch D, Engels I, Müller A , et al. Structural variations of the cell wall precursor lipid Ⅱ and their influence on binding and activity of the lipoglycope-ptide antibiotic oritavancin[J]. Antimicrob Agents Chemother, 2015,59(2):772-781.
doi: 10.1128/AAC.02663-14
[34] Holmberg KV, Abdolhosseini M, Li YP , et al. Bio-inspired stable antimicrobial peptide coatings for dental applications[J]. Acta Biomater, 2013,9(9):8224-8231.
doi: 10.1016/j.actbio.2013.06.017 pmid: 3758876
[35] Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC , et al. Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bac-terial adhesion and biofilm formation[J]. Acta Bio-mater, 2014,10(8):3522-3534.
doi: 10.1016/j.actbio.2014.03.026
[36] Kazemzadeh-Narbat M, Lai B, Ding CF , et al. Multi-layered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections[J]. Biomaterials, 2013,34(24):5969-5977.
doi: 10.1016/j.biomaterials.2013.04.036
[37] Chen X, Zhou XC, Liu S , et al. In vivo osseointe-gration of dental implants with an antimicrobial peptide coating[J]. J Mater Sci Mater Med, 2017,28(5):76.
doi: 10.1007/s10856-017-5885-8
[38] Kaplan JB , Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses[J]. J Dent Res, 2010,89(3):205-218.
doi: 10.1078/072320203322346137 pmid: 20139339
[1] Han Chong,He Dongning,Yu Feiyan,Wu Dongchao. Research progress on the mechanism and treatment of pain after oral implants [J]. Int J Stomatol, 2024, 51(1): 99-106.
[2] Liao Honglin,Fang Zhonghan,Zhang Yanyan,Liu Fei,Shen Jiefei.. Diagnosis and treatment of post-traumatic trigeminal neuropathic pain after dental implantation [J]. Int J Stomatol, 2023, 50(6): 729-738.
[3] Gong Jiaming,Zhao Ruimin,Pan Hongwei,Lang Xin,Yu Zhanhai,Li Jianxue. Meta-analysis of dynamic navigation versus static navigation in the accuracy of implant surgery [J]. Int J Stomatol, 2023, 50(5): 538-551.
[4] Zhu Keshi,Liao Anqi,Yu Youcheng.. Research progress on the application of machine learning in dental implantology [J]. Int J Stomatol, 2023, 50(4): 491-498.
[5] Lu Qian,Xia Haibin,Wang Min.. Research progress on implantoplasty in the treatment of peri-implantitis [J]. Int J Stomatol, 2023, 50(2): 152-158.
[6] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontics microsurgery: clinical protocol and practical cases (part 2) [J]. Int J Stomatol, 2022, 49(6): 621-632.
[7] Man Yi, Huang Dingming. Combined treatment strategy of oral implantology and endodontic microsurgery for bone augmentation and en-dodontic diseases in aesthetic area (part 1): application basis and indications [J]. Int J Stomatol, 2022, 49(5): 497-505.
[8] Zhang Xidan,Sun Jiyu,Fu Xinliang,Gan Xueqi.. Research progress on the development of mesoporous calcium silicate nanoparticles in endodontics and repairing maxillofacial bone defects [J]. Int J Stomatol, 2022, 49(4): 476-482.
[9] Wang Yue,Wen Bing,Deng Mengting,Li Jianping. Research advances of low-level laser therapy on peri-implant tissue healing [J]. Int J Stomatol, 2021, 48(6): 725-730.
[10] Zhu Xuanzhi,Zhao Lei. Research progress on the relationship between hypothyroidism and periodontitis [J]. Int J Stomatol, 2021, 48(4): 380-384.
[11] Feng Lu,Meng Wenxia. Research progress on the problems of dental implant treatment in patients with common oral mucosal disease [J]. Int J Stomatol, 2021, 48(2): 147-155.
[12] Wang Jia,Li Wenxia,Yin Lihua. Restoration strategy of dental implant for impacted teeth in the edentulous area [J]. Int J Stomatol, 2021, 48(1): 77-81.
[13] Wu Jielin,Gao Ying. Application progress on free soft-tissue grafts harvested from palatal mucosa [J]. Int J Stomatol, 2020, 47(6): 686-692.
[14] Wang Huan,Liu Yang,Qi Mengchun,Li Jingyi,Liu Mengnan,Sun Hong. Research progress on the preparation of titanium-based implant surface coatings by micro-arc oxidation [J]. Int J Stomatol, 2020, 47(4): 439-444.
[15] Xiao Yuhan,Yu Haiyang. Interproximal open contacts between implant restorations and adjacent teeth [J]. Int J Stomatol, 2020, 47(2): 202-205.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .