国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (6): 724-729.doi: 10.7518/gjkq.2019089

• 综述 • 上一篇    下一篇

促红细胞生成素肝细胞激酶受体及其膜结合配体对牙槽骨改建作用的研究进展

王琳璇1,王琦1,赵云1,米方林1,2()   

  1. 1. 川北医学院口腔医学系 南充 637000
    2. 川北医学院附属医院口腔科 南充 637000
  • 收稿日期:2019-01-05 修回日期:2019-06-28 出版日期:2019-11-01 发布日期:2019-11-14
  • 通讯作者: 米方林
  • 作者简介:王琳璇,医师,硕士,Email: 364632216@qq.com
  • 基金资助:
    四川省教育厅科研项目(15ZA0210);南充市研发资金项目(16YFZJ0123);南充市市校科技战略合作专项基金(NSMC2017- 0442)

Research progress of erythropoietin-producing hepatocyte kinase receptor and ephrin ligand in alveolar bone remodeling

Wang Linxuan1,Wang Qi1,Zhao Yun1,Mi Fanglin1,2()   

  1. 1. Dept. of Stomatology, North Sichuan Medical College, Nanchong 637000, China
    2. Dept. of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
  • Received:2019-01-05 Revised:2019-06-28 Online:2019-11-01 Published:2019-11-14
  • Contact: Fanglin Mi
  • Supported by:
    This study was supported by Scientific Research Project of Sichuan Education Department(15ZA0210);Research and Development Fund Project of Nanchong(16YFZJ0123);Science and Technology Strategic Cooperation between City and School of Nanchong(NSMC2017- 0442)

摘要:

促红细胞生成素肝细胞激酶受体及其膜结合配体(ephrin/Eph)是除核因子κB受体活化因子配体/核因子κB受体活化因子/骨保护素(RANKL/RANK/OPG)外与骨改建相关的新的信号通路。在牙槽骨改建过程中ephrin/Eph相关因子不仅与骨细胞之间的相互作用相关,同时还受牙周膜细胞的影响。与正常骨组织相比,牙槽骨组织改建过程中相关因子表达存在明显差异,这说明了ephrin/Eph相关因子对骨改建过程的调控具有复杂性和重要性。本文就ephrin/Eph通路在骨细胞与牙周膜成纤维细胞中的相互作用进而参与牙槽骨改建的研究进展进行综述。

关键词: 促红细胞生成素肝细胞激酶受体, 促红细胞生成素肝细胞激酶受体膜结合配体, 牙槽骨, 骨改建, 牙周膜

Abstract:

The erythropoietin producing hepatocyte kinase receptor and ephrin ligand (ephrin/Eph) are new signal pathways associated with bone remodeling in addition to the receptor activator for nuclear factor-κB ligand/receptor activator for nuclear factor-κB/osteoprotegenin (RANKL/RANK/OPG). In alveolar bone remodeling, ephrin/Eph-related factors are not only related to the interaction between bone cells but also affected by periodontal ligament cells. The expression of related factors in the process of alveolar bone tissue remodeling is substantially different from that for normal bone tissue. This difference reveals the complexity and importance of ephrin/Eph-related factors in the regulation of bone remodeling. This study reviews the research progress on the interaction of the ephrin/Eph pathway between bone cells and periodontal ligament cells to participate in alveolar bone remodeling.

Key words: erythropoietin producing hepatocyte kinase receptor, erythropoietin producing hepatocyte kinase ligand, alveolar bone, bone remodeling, periodontal ligament

中图分类号: 

  • Q26
[1] Lisabeth EM, Falivelli G, Pasquale EB . Eph receptor signaling and ephrins[J]. Cold Spring Harb Perspect Biol, 2013,5(9):a009159.
[2] Pitulescu ME, Adams RH . Eph/ephrin molecules: a hub for signaling and endocytosis[J]. Genes Dev, 2010,24(22):2480-2492.
[3] Davy A, Soriano P . Ephrin signaling in vivo: look both ways[J]. Dev Dyn, 2005,232(1):1-10.
[4] Taylor H, Campbell J, Nobes CD . Ephs and ephrins[J]. Curr Biol, 2017,27(3):R90-R95.
[5] 吴梓齐, 杨涛源, 王景云 . 浅谈EphrinB2/ephB4在骨重建中的作用[J]. 中华老年口腔医学杂志, 2014,12(3):184-187.
Wu ZQ, Yang TY, Wang JY . The function of Eph-rinB2/ephB4 in bone reconstruction[J]. Chin J Geriatr Dent, 2014,12(3):184-187.
[6] 赵鹃, 毛英杰, 谷志远 . 骨吸收与骨形成耦联中Eph/ephrin信号转导的研究进展[J]. 生物化学与生物物理进展, 2009,36(9):1101-1105.
Zhao J, Mao YJ, Gu ZY . Progress in researches of Eph/ephrin signaling in coupling of bone resorption and bone formation[J]. Prog Biochem Biophys, 2009,36(9):1101-1105.
[7] Schaupp A, Sabet O, Dudanova I , et al. The com-position of EphB2 clusters determines the strength in the cellular repulsion response[J]. J Cell Biol, 2014,204(3):409-422.
[8] Hwang YS, Daar IO . A frog’s view of EphrinB signa-ling[J]. Genesis, 2017,55(1/2):1-9.
[9] Niethamer TK, Bush JO . Getting direction(s): the Eph/ephrin signaling system in cell positioning[J]. Dev Biol, 2019,447(1):42-57.
[10] Cayuso J, Dzementsei A, Fischer JC , et al. EphrinB1/EphB3b coordinate bidirectional epithelial-mesen-chymal interactions controlling liver morphogenesis and laterality[J]. Dev Cell, 2016,39(3):316-328.
[11] Gong JY, Körner R, Gaitanos L , et al. Exosomes mediate cell contact-independent ephrin-Eph signa-ling during axon guidance[J]. J Cell Biol, 2016,214(1):35-44.
[12] Dai DD, Huang Q, Nussinov R , et al. Promiscuous and specific recognition among ephrins and Eph receptors[J]. Biochim Biophys Acta, 2014,1844(10):1729-1740.
[13] Singh A, Winterbottom E, Daar IO . Eph/ephrin signaling in cell-cell and cell-substrate adhesion[J]. Front Biosci (Landmark Ed), 2012,17:473-497.
[14] Pegg CL, Cooper LT, Zhao J , et al. Glycoengineering of EphA4 Fc leads to a unique, long-acting and broad spectrum, Eph receptor therapeutic antagonist[J]. Sci Rep, 2017,7(1):6519.
[15] Li C, Shi C, Kim J , et al. Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling[J]. J Dent Res, 2015,94(3):455-463.
[16] Sawamiphak S, Seidel S, Essmann CL , et al. Ephrin- B2 regulates VEGFR2 function in developmental and tumour angiogenesis[J]. Nature, 2010,465(7297):487-491.
[17] Liao CS, Cheng TF, Wang S , et al. Shear stress inhi-bits IL-17A-mediated induction of osteoclastogenesis via osteocyte pathways[J]. Bone, 2017,101:10-20.
[18] Xie H, Cui Z, Wang L , et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis[J]. Nat Med, 2014,20(11):1270-1278.
[19] Wang LM, Zhang J, Wang CW , et al. Low concentra-tions of TNF-α promote osteogenic differentiation via activation of the ephrinB2-EphB4 signalling pathway[J]. Cell Prolif, 2017,50(1):1-10.
[20] Benson MD, Opperman LA, Westerlund J , et al. Ephrin-B stimulation of calvarial bone formation[J]. Dev Dyn, 2012,241(12):1901-1910.
[21] Cheng SH, Kesavan C, Mohan S , et al. Transgenic overexpression of ephrin b1 in bone cells promotes bone formation and an anabolic response to mecha-nical loading in mice[J]. PLoS One, 2013,8(7):e69051.
[22] Takyar FM, Tonna S, Ho PAM , et al. EphrinB2/EphB4 inhibition in the osteoblast lineage modifies the anabolic response to parathyroid hormone[J]. J Bone Miner Res, 2013,28(4):912-925.
[23] Zhao C, Irie N, Takada Y , et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis[J]. Cell Metab, 2006,4(2):111-121.
[24] Shen LL, Zhang LX, Wang LM , et al. Disturbed expression of EphB4, but not EphrinB2, inhibited bone regeneration in an in vivo inflammatory micro-environment[J]. Mediators Inflamm, 2016,2016:6430407.
[25] Wu M, Ai WT, Chen L , et al. Bradykinin receptors and EphB2/EphrinB2 pathway in response to high glucose-induced osteoblast dysfunction and hyper-glycemia-induced bone deterioration in mice[J]. Int J Mol Med, 2016,37(3):565-574.
[26] Tonna S, Takyar FM, Vrahnas C , et al. EphrinB2 signaling in osteoblasts promotes bone minerali-zation by preventing apoptosis[J]. FASEB J, 2014,28(10):4482-4496.
[27] Irie N, Takada Y, Watanabe Y , et al. Bidirectional signaling through ephrinA2-EphA2 enhances osteo-clastogenesis and suppresses osteoblastogenesis[J]. J Biol Chem, 2009,284(21):14637-14644.
[28] Gao AC, Wang XC, Yu HY , et al. Effect of Porphyro-monas gingivalis lipopolysaccharide (Pg-LPS) on the expression of EphA2 in osteoblasts and osteo-clasts[J]. In vitro Cell Dev Biol Anim, 2016,52(2):228-234.
[29] Zhang Y, Wang XC, Bao XF , et al. Effects of Por-phyromonas gingivalis lipopolysaccharide on osteo-blast-osteoclast bidirectional EphB4-EphrinB2 signaling[J]. Exp Ther Med, 2014,7(1):80-84.
[30] Yamada T, Yoshii T, Yasuda H , et al. Dexamethasone regulates EphA5, a potential inhibitory factor with osteogenic capability of human bone marrow stromal cells[J]. Stem Cells Int, 2016,2016:1301608.
[31] Diercke K, Kohl A, Lux CJ , et al. Strain-dependent up-regulation of ephrin-B2 protein in periodontal ligament fibroblasts contributes to osteogenesis during tooth movement[J]. J Biol Chem, 2011,286(43):37651-37664.
[32] Sen S, Diercke K, Zingler S , et al. Compression in-duces Ephrin-A2 in PDL fibroblasts via c-fos[J]. J Dent Res, 2015,94(3):464-472.
[33] Diercke K, Sen S, Kohl A , et al. Compression-de-pendent up-regulation of ephrin-A2 in PDL fibro-blasts attenuates osteogenesis[J]. J Dent Res, 2011,90(9):1108-1115.
[34] Hou JH, Chen YZ, Meng XP , et al. Compressive force regulates ephrinB2 and EphB4 in osteoblasts and osteoclasts contributing to alveolar bone resor-ption during experimental tooth movement[J]. Korean J Orthod, 2014,44(6):320-329.
[35] 杜沿林, 张辉, 孟蕾 , 等. 大鼠正畸牙移动过程中ephrinA2在牙周膜内的表达与分布[J]. 牙体牙髓牙周病学杂志, 2016,26(2):74-77, 120.
Du YL, Zhang H, Meng L , et al. EphrinA2 expre-ssion and distribution in periodontal ligament during orthodontic tooth movement in rats[J]. Chin J Conserv Dent, 2016,26(2):74-77, 120.
[36] Li M, Zhang C, Jin L , et al. Porphyromonas gin-givalis lipopolysaccharide regulates ephrin/Eph signalling in human periodontal ligament fibroblasts[J]. J Periodont Res, 2017,52(5):913-921.
[1] 余岳霖,孔卫东. 甲状旁腺激素受体1基因相关与原发性牙齿萌出障碍的研究进展[J]. 国际口腔医学杂志, 2023, 50(5): 573-580.
[2] 黄定明, 张岚, 满毅. 牙保存相关上颌窦底提升术的生物学基础[J]. 国际口腔医学杂志, 2023, 50(3): 251-262.
[3] 刘艺,刘奕. 巨噬细胞源性外泌体调控骨改建的研究进展[J]. 国际口腔医学杂志, 2023, 50(1): 120-126.
[4] 尹一佳,杨瑾廷,申建琪,黄凌依,井岩,官秋玥,韩向龙. 钙黏蛋白5驱动内皮细胞特异性过表达Dickkopf 1影响骨形成[J]. 国际口腔医学杂志, 2022, 49(6): 641-647.
[5] 查蕴宸,张佳佳,孔卫东. 原发性牙齿萌出障碍病因的研究进展[J]. 国际口腔医学杂志, 2022, 49(4): 386-391.
[6] 蒋端,申道南,赵蕾,吴亚菲. 内皮发育调节基因-1与牙周炎相关性的研究进展[J]. 国际口腔医学杂志, 2022, 49(2): 244-248.
[7] 刘娟,陈斌,闫福华. 富血小板血浆和浓缩生长因子对人牙周膜细胞增殖和成骨分化影响的研究[J]. 国际口腔医学杂志, 2021, 48(5): 520-527.
[8] 许琳,王如意,勾薪瑞,王晓莉,李宇. 甲状旁腺激素相关蛋白调控下颌髁突软骨的研究进展[J]. 国际口腔医学杂志, 2021, 48(5): 549-555.
[9] 伍春兰,唐华,陈军. 成人骨性Ⅱ类高角开牙合患者上下切牙区牙槽骨形态的三维研究[J]. 国际口腔医学杂志, 2021, 48(4): 426-432.
[10] 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660.
[11] 马心笛,陈蕾. 完全脱位牙再植的牙髓、牙周膜愈合:从生物学基础到牙外伤指南[J]. 国际口腔医学杂志, 2020, 47(3): 336-344.
[12] 王润婷,房付春. 非编码RNA调控人牙周膜干细胞成骨向分化的研究进展[J]. 国际口腔医学杂志, 2020, 47(2): 138-145.
[13] 余晓宏,刘屿,曾莲,杨艳玲,王洲,李卫. 釉基质衍生物对人牙周膜干细胞成骨分化的影响[J]. 国际口腔医学杂志, 2020, 47(1): 24-31.
[14] 高鑫,曾融生. 骨保护素在口腔领域的研究进展[J]. 国际口腔医学杂志, 2019, 46(3): 316-319.
[15] 姜懿轩,莫龙义,贾小玥,徐欣,刘程程. 植物雌激素防治牙周炎的研究进展[J]. 国际口腔医学杂志, 2018, 45(5): 571-578.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .