国际口腔医学杂志 ›› 2021, Vol. 48 ›› Issue (5): 609-613.doi: 10.7518/gjkq.2021087

• 综述 • 上一篇    下一篇

吸烟影响口腔微环境及其在龋病进展中的作用

范宇(),程磊()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院牙体牙髓病科 成都 610041
  • 收稿日期:2020-12-24 修回日期:2021-05-22 出版日期:2021-09-01 发布日期:2021-09-10
  • 通讯作者: 程磊
  • 作者简介:范宇,学士,Email: 1186529727@qq.com
  • 基金资助:
    国家自然科学基金面上项目(81870759)

Smoking affects the oral microenvironment and its role in the progression of dental caries

Fan Yu(),Cheng Lei()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2020-12-24 Revised:2021-05-22 Online:2021-09-01 Published:2021-09-10
  • Contact: Lei Cheng
  • Supported by:
    National Natural Science Foundation of China(81870759)

摘要:

流行病学研究表明:吸烟与龋病的发生发展密切相关。现代龋病病因学指出:口腔微环境的改变,包括唾液的流率、缓冲能力、成分等,以及口腔微生物组成的改变,导致产酸耐酸菌成为优势菌,脱矿-再矿化平衡被打破,导致了龋病的形成。此外,社会经济地位、口腔保健意识等其他龋病相关因素也会影响龋病的发生发展。研究显示:吸烟会对口腔微环境产生直接和间接的影响,进而促进龋病的发生。本文将从这一方面对吸烟的致龋机制作一综述。

关键词: 吸烟, 龋病, 唾液, 口腔微生物, 尼古丁

Abstract:

Numerous epidemiological studies report a close relationship between smoking and the occurrence of dental caries. Modern caries etiology shows that changes in the oral microenvironment including saliva flow rate, buffer capacity, composition, and oral microbial composition causes acid-forming and acid-fast bacteria to dominate. Consequently, the balance of demineralization and remineralization is broken, leading to the occurrence of caries. Other caries-related factors such as socioeconomic status and oral-health awareness also affect the occurrence and development of caries. Studies show that smoking exerts direct and indirect effects on the oral microenvironment, thereby promoting the occurrence of caries. The aim of our review is to summarize the effect of smoking on dental caries from this aspect.

Key words: smoking, dental caries, saliva, oral microorganism, nicotine

中图分类号: 

  • R781.1
[1] Mainali P, Pant S, Rodriguez AP, et al. Tobacco and cardiovascular health[J]. Cardiovasc Toxicol, 2015, 15(2):107-116.
doi: 10.1007/s12012-014-9280-0
[2] Petersson GH, Twetman S. Tobacco use and caries increment in young adults: a prospective observational study[J]. BMC Res Notes, 2019, 12(1):218.
doi: 10.1186/s13104-019-4253-9 pmid: 30971314
[3] Golpasand Hagh L, Zakavi F, Ansarifar S, et al. Association of dental caries and salivary sIgA with tobacco smoking[J]. Aust Dent J, 2013, 58(2):219-223.
doi: 10.1111/adj.12059 pmid: 23713643
[4] Rad M, Kakoie S, Niliye Brojeni F, et al. Effect of long-term smoking on whole-mouth salivary flow rate and oral health[J]. J Dent Res Dent Clin Dent Prospects, 2010, 4(4):110-114.
[5] Thomson WM, Chalmers JM, Spencer AJ, et al. Me-dication and dry mouth: findings from a cohort study of older people[J]. J Public Health Dent, 2000, 60(1):12-20.
pmid: 10734611
[6] Gao X, Jiang S, Koh D, et al. Salivary biomarkers for dental caries[J]. Periodontol 2000, 2016, 70(1):128-141.
doi: 10.1111/prd.12100
[7] Konić-Ristić A, Šavikin K, Zdunić G, et al. Acute effects of black currant consumption on salivary flow rate and secretion rate of salivary immunoglobulin a in healthy smokers[J]. J Med Food, 2015, 18(4):483-488.
doi: 10.1089/jmf.2013.0149 pmid: 25734687
[8] Khan GJ, Mehmood R Salah-ud-Din, et al. Effects of long-term use of tobacco on taste receptors and salivary secretion[J]. J Ayub Med Coll Abbottabad, 2003, 15(4):37-39.
[9] Rosa MB, Fernandes MDS, Bonjardim LR, et al. Evaluation of oral mechanical and gustatory sensitivities and salivary cotinine levels in adult smokers[J]. Acta Odontol Scand, 2020, 78(4):256-264.
doi: 10.1080/00016357.2019.1694978
[10] Pavlidis P, Gouveris C, Kekes G, et al. Changes in electrogustometry thresholds, tongue tip vascularization, density and form of the fungiform papillae in smokers[J]. Eur Arch Otorhinolaryngol, 2014, 271(8):2325-2331.
doi: 10.1007/s00405-014-3003-9 pmid: 24633309
[11] Khan AM, Narayanan VS, Puttabuddi JH, et al. Comparison of taste threshold in smokers and non-smokers using electrogustometry fungiform papillae count: a case control study[J]. J Clin Diagn Res, 2016, 10(5): ZC101-ZC105.
[12] Ferragut JM, da Cunha MR, Carvalho CA, et al. E-pithelial-stromal interactions in salivary glands of rats exposed to chronic passive smoking[J]. Arch Oral Biol, 2011, 56(6):580-587.
doi: 10.1016/j.archoralbio.2010.11.017 pmid: 21168828
[13] Lenander-Lumikari M, Loimaranta V. Saliva and dental caries[J]. Adv Dent Res, 2000, 14:40-47.
doi: 10.1177/08959374000140010601
[14] Khemiss M, Ben Khelifa M, Ben Saad H. Preliminary findings on the correlation of saliva pH, buffe-ring capacity, flow rate and consistency in relation to waterpipe tobacco smoking[J]. Libyan J Med, 2017, 12(1):1289651.
doi: 10.1080/19932820.2017.1289651 pmid: 28266252
[15] Wu JY, Li MY, Huang RJ. The effect of smoking on caries-related microorganisms[J]. Tob Induc Dis, 2019, 17:32.
[16] Avşar A, Darka O, Bodrumlu EH, et al. Evaluation of the relationship between passive smoking and sa-livary electrolytes, protein, secretory IgA, sialic acid and amylase in young children[J]. Arch Oral Biol, 2009, 54(5):457-463.
doi: 10.1016/j.archoralbio.2009.01.017
[17] Benowitz NL, Hukkanen J, Jacob P. Nicotine chemi-stry, metabolism, kinetics and biomarkers[J]. Handb Exp Pharmacol, 2009(192):29-60.
doi: 10.1007/978-3-540-69248-5_2 pmid: 19184645
[18] Alkhattabi N, Todd I, Negm O, et al. Tobacco smoke and nicotine suppress expression of activating signaling molecules in human dendritic cells[J]. Toxicol Lett, 2018, 299:40-46.
doi: S0378-4274(18)31875-7 pmid: 30227238
[19] Duan X, Wu T, Xu X, et al. Smoking may lead to marginal bone loss around non-submerged implants during bone healing by altering salivary microbiome: a prospective study[J]. J Periodontol, 2017, 88(12):1297-1308.
doi: 10.1902/jop.2017.160808
[20] Tsigarida AA, Dabdoub SM, Nagaraja HN, et al. The influence of smoking on the peri-implant microbiome[J]. J Dent Res, 2015, 94(9):1202-1217.
doi: 10.1177/0022034515590581 pmid: 26124222
[21] Wu J, Peters BA, Dominianni C, et al. Cigarette smo-king and the oral microbiome in a large study of A-merican adults[J]. ISME J, 2016, 10(10):2435-2446.
doi: 10.1038/ismej.2016.37
[22] Kenney EB, Saxe SR, Bowles RD. The effect of ci-garette smoking on anaerobiosis in the oral cavity[J]. J Periodontol, 1975, 46(2):82-85.
pmid: 235017
[23] Macgregor ID. Effects of smoking on oral ecology. A review of the literature[J]. Clin Prev Dent, 1989, 11(1):3-7.
pmid: 2689047
[24] Brook I. The impact of smoking on oral and nasopharyngeal bacterial flora[J]. J Dent Res, 2011, 90(6):704-710.
doi: 10.1177/0022034510391794 pmid: 21558542
[25] Sopori M. Effects of cigarette smoke on the immune system[J]. Nat Rev Immunol, 2002, 2(5):372-377.
doi: 10.1038/nri803 pmid: 12033743
[26] El-Ezmerli NF, Gregory RL. Effect of nicotine on biofilm formation of Streptococcus mutans isolates from smoking and non-smoking subjects[J]. J Oral Microbiol, 2019, 11(1):1662275.
doi: 10.1080/20002297.2019.1662275 pmid: 31552130
[27] Huang R, Li M, Gregory RL. Nicotine promotes Streptococcus mutans extracellular polysaccharide synjournal, cell aggregation and overall lactate dehydrogenase activity[J]. Arch Oral Biol, 2015, 60(8):1083-1090.
doi: 10.1016/j.archoralbio.2015.04.011 pmid: 25985036
[28] Li M, Huang R, Zhou X, et al. Effect of nicotine on cariogenic virulence of Streptococcus mutans[J]. Folia Microbiol (Praha), 2016, 61(6):505-512.
doi: 10.1007/s12223-016-0465-8
[29] Takahashi N, Nyvad B. The role of bacteria in the caries process: ecological perspectives[J]. J Dent Res, 2011, 90(3):294-303.
doi: 10.1177/0022034510379602 pmid: 20924061
[30] Avşar A, Darka O, Topaloğlu B, et al. Association of passive smoking with caries and related salivary biomarkers in young children[J]. Arch Oral Biol, 2008, 53(10):969-974.
doi: 10.1016/j.archoralbio.2008.05.007 pmid: 18672230
[31] Dubois AE, Bennett ZC, Khalid U, et al. Nicotine: its stimulating and inhibitory effects on oral microorganisms[J]. Fine Focus, 2014, 1:63-75.
doi: 10.33043/FF
[32] Cogo K, Montan MF, Bergamaschi Cde C, et al. In vitro evaluation of the effect of nicotine, cotinine, and caffeine on oral microorganisms[J]. Can J Microbiol, 2008, 54(6):501-508.
doi: 10.1139/W08-032
[33] Valdebenito B, Tullume-Vergara PO, González W, et al. In silico analysis of the competition between Streptococcus sanguinis and Streptococcus mutans in the dental biofilm[J]. Mol Oral Microbiol, 2018, 33(2):168-180.
doi: 10.1111/omi.12209 pmid: 29237244
[34] Li M, Huang R, Zhou X, et al. Effect of nicotine on dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis[J]. FEMS Microbiol Lett, 2014, 350(2):125-132.
doi: 10.1111/fml.2014.350.issue-2
[35] Niskanen MC, Mattila PT, Niinimaa AO, et al. Behavioural and socioeconomic factors associated with the simultaneous occurrence of periodontal disease and dental caries[J]. Acta Odontol Scand, 2020, 78(3):196-202.
doi: 10.1080/00016357.2019.1679389 pmid: 31686553
[36] Bilodeau EA, Guggenheimer J. Relevance of smo-king interventions for dental clinic patients with smo-king-related disease[J]. J Public Health Dent, 2018, 78(2):154-158.
doi: 10.1111/jphd.2018.78.issue-2
[37] Csémy L, Sovinová H, Dvořáková Z. Socioeconomic and gender inequalities in smoking. Findings from the Czech National Tobacco Surveys 2012-2015[J]. Cent Eur J Public Health, 2018, 26(1):28-33.
doi: 10.21101/cejph.a4923
[38] Csikar J, Wyborn C, Dyer T, et al. The self-reported oral health status and dental attendance of smokers and non-smokers[J]. Community Dent Health, 2013, 30(1):26-29.
[1] 马平川,李春洁,李龙江. 唾液腺导管癌的诊疗研究进展[J]. 国际口腔医学杂志, 2021, 48(4): 459-467.
[2] 李诗佳,陈秋宇,邹静,黄睿洁. 尼古丁对口腔细菌单独或混合培养时菌群数目调控的研究[J]. 国际口腔医学杂志, 2021, 48(3): 305-311.
[3] 沈忆芬,刘超,汤颖,顾永春. 电子烟暴露对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 347-353.
[4] 杨志雷,刘宝盈. 龋病牙菌斑微生态研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 506-514.
[5] 杨佩佩,杨羽晨,张强. 尼古丁对牙槽骨破骨细胞的作用及其机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(5): 616-620.
[6] 杨虹,晋瑜,赖文莉. 安慰剂调节正畸牙移动疼痛的随机交叉对照试验[J]. 国际口腔医学杂志, 2020, 47(4): 424-430.
[7] 张明爽,巴特,王文标. 口腔微生物种群与阿尔茨海默病相关发病机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(1): 102-108.
[8] 崔钰嘉,孙建勋,周学东. 黄连素的生物学功能及治疗口腔疾病研究的进展[J]. 国际口腔医学杂志, 2020, 47(1): 115-120.
[9] 黄璐,戴杰,吴燕岷. 唾液生物标志物在口腔癌筛查中的应用[J]. 国际口腔医学杂志, 2020, 47(1): 68-75.
[10] 陈艳艳,彭显,周学东,程磊. 定量光导荧光技术在龋病及牙周疾病诊治中的应用[J]. 国际口腔医学杂志, 2019, 46(6): 699-704.
[11] 陈东,杨征,蒋丽. 放射性口腔干燥症的评估与临床管理的研究进展[J]. 国际口腔医学杂志, 2019, 46(6): 711-717.
[12] 黄萧瑜,李明云,周学东,程磊. 全身及局部因素对种植体周围稳态的影响[J]. 国际口腔医学杂志, 2019, 46(6): 730-734.
[13] 张佳喻,罗宁,苗棣,应绚,陈悦. 意向性牙再植治疗重度牙周炎患牙的临床研究[J]. 国际口腔医学杂志, 2019, 46(4): 400-406.
[14] 孟璐璐,杜晓红,武云霞. 灼口综合征唾液因素的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 463-468.
[15] 王晓波,林世耀,李霞. 母亲与儿童龋病关系的研究进展[J]. 国际口腔医学杂志, 2019, 46(4): 469-474.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 赵艳丽. 手术刀、电凝、CO_2和KTP激光对大鼠舌部创口的作用[J]. 国际口腔医学杂志, 1999, 26(04): .
[3] 轩东英,张建波 金岩. 胚胎发育期TGF-β超家族成员与腭裂发生的关系[J]. 国际口腔医学杂志, 2004, 31(02): 132 -134 .
[4] 孙兰英1 王其宝1 包崇云2 葛文章1 杜毅1. 碱性磷酸酶mRNA 在体内组织工程骨中的表达[J]. 国际口腔医学杂志, 2011, 38(4): 388 -391 .
[5] 周晗 张陶 岳源 乔梦婷 李燕 肖丽英. 葡萄多酚和茶多酚抗变异链球菌活性的比较[J]. 国际口腔医学杂志, 2011, 38(6): 643 -648 .
[6] 何苇, 卢胜军, 李承浩, 蒙田, 周京琳, 石冰. 不同剂量地塞米松对小鼠胚胎腭裂发生的影响[J]. 国际口腔医学杂志, 2009, 36(3): 270 -272 .
[7] 门乙 李春洁 李龙江 韩波 夏辉 高宁. 超声介导下的细针穿刺活检在腮腺肿瘤中的诊断价值的系统评价和Meta分析[J]. 国际口腔医学杂志, 2013, 40(4): 447 -450 .
[8] 房俊艳综述 凌均棨审校 . 树脂单体毒性机制的研究进展[J]. 国际口腔医学杂志, 2010, 37(3): 302 -302~305 .
[9] 黄萍 万呼春 田婷玉 何永红. 甘草水煎剂对变异链球菌黏附影响的体外实验[J]. 国际口腔医学杂志, 2013, 40(3): 285 -287 .
[10] 李晓宁综述 樊明文 杨雪超审校. 牙髓病治疗新材料BioAggregate的研究进展[J]. 国际口腔医学杂志, 2013, 40(4): 471 -472 .