国际口腔医学杂志 ›› 2019, Vol. 46 ›› Issue (4): 488-496.doi: 10.7518/gjkq.2019067

• 综述 • 上一篇    

口腔种植体新材料的研究现状

于婉琦,周延民,赵静辉()   

  1. 吉林大学口腔医院种植科 长春 130021
  • 收稿日期:2018-10-28 修回日期:2019-03-20 出版日期:2019-07-10 发布日期:2019-07-12
  • 作者简介:于婉琦,硕士,Email: 1252891000@qq.com
  • 基金资助:
    国家自然科学基金(81200809);吉林省科技发展计划项目(20180101123JC)

Research status of new materials in dental implants

Yu Wanqi,Zhou Yanmin,Zhao Jinghui()   

  1. Dept. of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun 130021, China
  • Received:2018-10-28 Revised:2019-03-20 Online:2019-07-10 Published:2019-07-12
  • Supported by:
    This study was supported by National Natural Science Foundation of China(81200809);Science and Technology Development Plan of Jilin Province(20180101123JC)

摘要:

目前种植义齿已经广泛应用于牙列缺损和牙列缺失的患者,钛及钛合金因其具有良好的生物相容性、力学强度及耐腐蚀性,而成为口腔种植体的首选材料。但随着材料学的发展和处理、加工技术的进步,新的口腔种植体材料层出不穷,逐渐进入到口腔种植学者的视线。新出现的材料如新型钛合金、钽基金属、金属玻璃、氧化锆、硅灰石、氮化硅、聚醚醚酮等,这些材料在性能和诱导成骨方面各有其特点。本文就近年口腔种植体新材料的研究现状进行综述。

关键词: 牙种植体, 种植体材料, 钛合金, 陶瓷, 聚醚醚酮

Abstract:

Implant dentures have been widely used in patients with dentition defects and edentulous. Titanium and titanium alloys have become the preferred materials for dental implants, given their good biocompatibility, mechanical strength, and corrosion resistance. However, with the development of materials science and processing technology, new dental implant materials have emerged and have been widely investigated. These materials, such as new titanium alloy, tantalum, bulk metallic glasses, zirconia, siliconite, silicon nitride, and polyether-ether-ketone, exhibit varying performance and induce osteogenesis. This paper reviews the recent research status of new materials for dental implants.

Key words: dental implant, implant material, titanium alloy, ceramic, polyether-ether-ketone

中图分类号: 

  • R783.4
[1] Wang Y, Yu HJ, Chen CZ , et al. Review of the biocom-patibility of micro-arc oxidation coated titanium alloys[J]. Mater Des, 2015,85:640-652.
[2] Quirynen M, Al-Nawas B, Meijer HJ , et al. Small-diameter titanium Grade Ⅳ and titanium-zirconium implants in edentulous mandibles: three-year results from a double-blind, randomized controlled trial[J]. Clin Oral Implants Res, 2015,26(7):831-840.
[3] 马凯, 赵宝红, 邓春富 . 医用钛及钛合金牙种植体生物相容性及其相关抗菌性能研究进展[J]. 中国实用口腔科杂志, 2016,9(7):441-445.
Ma K, Zhao BH, Deng CF . Research advances on the biocompatibility and related antibacterial properties of biomedical titanium and titanium alloy dental implants[J]. Chin J Pract Stomatol, 2016,9(7):441-445.
[4] Neoh KG, Hu XF, Zheng D , et al. Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces[J]. Biomaterials, 2012,33(10):2813-2822.
doi: 10.1016/j.biomaterials.2012.01.018
[5] Salou L, Hoornaert A, Louarn G , et al. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits[J]. Acta Biomater, 2015,11:494-502.
[6] Saini M, Singh Y, Arora P , et al. Implant biomaterials: a comprehensive review[J]. World J Clin Cases, 2015,3(1):52-57.
[7] Pylypchuk IeV, Petranovskaya AL, Gorbyk PP , et al. Biomimetic hydroxyapatite growth on functionalized surfaces of Ti-6Al-4V and Ti-Zr-Nb alloys[J]. Nanoscale Res Lett, 2015,10(1):1017.
[8] Lee WT, Koak JY, Lim YJ , et al. Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants[J]. J Biomed Mater Res Part B Appl Biomater, 2012,100(4):1044-1052.
[9] Wachi T, Shuto T, Shinohara Y , et al. Release of titanium ions from an implant surface and their effect on cytokine production related to alveolar bone resorption[J]. Toxicology, 2015,327:1-9.
[10] Goutam M, Giriyapura C, Mishra SK , et al. Titanium allergy: a literature review[J]. Indian J Dermatol, 2014,59(6):630.
[11] Cordeiro JM, Barão VAR . Is there scientific evidence favoring the substitution of commercially pure titanium with titanium alloys for the manufacture of dental implants[J]. Mater Sci Eng C Mater Biol Appl, 2017,71:1201-1215.
[12] Osman RB, Swain MV . A critical review of dental implant materials with an emphasis on titanium versus zirconia[J]. Materials (Basel), 2015,8(3):932-958.
[13] Nazari KA, Nouri A, Hilditch T . Mechanical properties and microstructure of powder metallurgy Ti- xNb-yMo alloys for implant materials[J]. Mater Des, 2015,88:1164-1174.
[14] Revathi A, Borrás AD, Muñoz AI , et al. Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:1354-1368.
[15] Gómez-Florit M, Ramis JM, Xing R , et al. Differential response of human gingival fibroblasts to titanium- and titanium-zirconium-modified surfaces[J]. J Periodont Res, 2014,49(4):425-436.
[16] Grandin HM, Berner S, Dard M . A review of titanium zirconium (TiZr) alloys for use in endosseous dental implants[J]. Materials, 2012,5(8):1348-1360.
[17] Wen B, Zhu F, Li Z , et al. The osseointegration behavior of titanium-zirconium implants in ovariecto-mized rabbits[J]. Clin Oral Implants Res, 2014,25(7):819-825.
[18] Gottlow J, Dard M, Kjellson F , et al. Evaluation of a new titanium-zirconium dental implant: a biomechanical and histological comparative study in the mini pig[J]. Clin Implant Dent Relat Res, 2012,14(4):538-545.
[19] Altuna P, Lucas-Taulé E, Gargallo-Albiol J , et al. Clinical evidence on titanium-zirconium dental implants: a systematic review and Meta-analysis[J]. Int J Oral Maxillofac Surg, 2016,45(7):842-850.
[20] Iegami CM, Uehara PN, Sesma N , et al. Survival rate of titanium-zirconium narrow diameter dental implants versus commercially pure titanium narrow diameter dental implants: a systematic review[J]. Clin Implant Dent Relat Res, 2017,19(6):1015-1022.
[21] Fojt J, Joska L, Malek J , et al. Corrosion behavior of Ti-39Nb alloy for dentistry[J]. Mater Sci Eng C Mater Biol Appl, 2015,56:532-537.
[22] de Andrade DP, de Vasconcellos LM, Carvalho IC , et al. Titanium-35niobium alloy as a potential material for biomedical implants: in vitro study[J]. Mater Sci Eng C Mater Biol Appl, 2015,56:538-544.
[23] do Prado RF, Rabêlo SB, de Andrade DP , et al. Porous titanium and Ti-35Nb alloy: effects on gene expression of osteoblastic cells derived from human alveolar bone[J]. J Mater Sci Mater Med, 2015,26(11):259.
[24] Liu XT, Chen SY, Tsoi JKH , et al. Binary titanium alloys as dental implant materials-a review[J]. Regen Biomater, 2017,4(5):315-323.
[25] Challa VS, Mali S, Misra RD . Reduced toxicity and superior cellular response of preosteoblasts to Ti-6Al-7Nb alloy and comparison with Ti-6Al-4V[J]. J Biomed Mater Res A, 2013,101(7):2083-2089.
[26] Lee J, Hurson S, Tadros H , et al. Crestal remodelling and osseointegration at surface-modified commercially pure titanium and titanium alloy implants in a canine model[J]. J Clin Periodontol, 2012,39(8):781-788.
doi: 10.1111/j.1600-051X.2012.01905.x
[27] Miura K, Yamada N, Hanada S , et al. The bone tissue compatibility of a new Ti-Nb-Sn alloy with a low Young’s modulus[J]. Acta Biomater, 2011,7(5):2320-2326.
[28] Takahashi K, Shiraishi N, Ishiko-Uzuka R , et al. Biomechanical evaluation of Ti-Nb-Sn alloy implants with a low Young’s modulus[J]. Int J Mol Sci, 2015,16(3):5779-5788.
[29] Kim HJ, Jeong YH, Choe HC , et al. Surface morphology of TiN-coated nanotubular Ti-25Ta-xZr alloys for dental implants prepared by RF sputtering[J]. Thin Solid Films, 2013,549:131-134.
[30] Kim HJ, Choe HC . Electrochemical and sputtering deposition of hydroxyapatite film on nanotubular Ti-25Ta-xZr alloys[J]. J Nanosci Nanotechnol, 2014,14(11):8405-8410.
[31] Ozan S, Lin JX, Li YC , et al. Development of Ti-Nb-Zr alloys with high elastic admissible strain for temporary orthopedic devices[J]. Acta Biomater, 2015,20:176-187.
[32] Ribeiro AL, Hammer P, Vaz LG , et al. Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study[J]. Biomed Mater, 2013,8(6):065005.
[33] Golvano I, Garcia I, Conde A , et al. Influence of fluoride content and pH on corrosion and tribocorrosion behaviour of Ti13Nb13Zr alloy in oral envi-ronment[J]. J Mech Behav Biomed Mater, 2015,49:186-196.
[34] Cheng YC, Hu J, Zhang CB , et al. Corrosion behavior of novel Ti-24Nb-4Zr-7.9Sn alloy for dental implant applications in vitro[J]. J Biomed Mater Res Part B Appl Biomater, 2013,101(2):287-294.
[35] Nune KC, Misra RD, Li SJ , et al. Osteoblast cellular activity on low elastic modulus Ti-24Nb-4Zr-8Sn alloy[J]. Dent Mater, 2017,33(2):152-165.
[36] Guo YY, Chen DS, Cheng MQ , et al. The bone tissue compatibility of a new Ti35Nb2Ta3Zr alloy with a low Young’s modulus[J]. Int J Mol Med, 2013,31(3):689-697.
doi: 10.3892/ijmm.2013.1249
[37] Stenlund P, Omar O, Brohede U , et al. Bone response to a novel Ti-Ta-Nb-Zr alloy[J]. Acta Biomater, 2015,20:165-175.
[38] Ozan S, Lin JX, Li YC , et al. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications[J]. J Mech Behav Biomed Mater, 2017,75:119-127.
[39] Meng X, Wang XN, Guo Y , et al. Biocompatibility evaluation of a newly developed Ti-Nb-Zr-Ta-Si alloy implant[J]. J Biomater Tissue Eng, 2016,6(11):861-869.
[40] Wang XN, Meng X, Chu SL , et al. Osseointegration behavior of novel Ti-Nb-Zr-Ta-Si alloy for dental implants: an in vivo study[J]. J Mater Sci Mater Med, 2016,27(9):139.
[41] 路荣建, 刘洪臣 . 多孔钽作为骨植入材料的研究进展[J]. 中华老年口腔医学杂志, 2013,11(3):173-176.
Lu RJ, Liu HC . The research progress of porous tantalum as bone implant material[J]. Chin J Geriatr Dent, 2013,11(3):173-176.
[42] Liu YD, Bao CY, Wismeijer D , et al. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implanto- logy[J]. Mater Sci Eng C Mater Biol Appl, 2015,49:323-329.
[43] Bencharit S, Byrd WC, Altarawneh S , et al. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants[J]. Clin Implant Dent Relat Res, 2014,16(6):817-826.
[44] Mohandas G, Oskolkov N , McMahon MT, et al. Porous tantalum and tantalum oxide nanoparticles for regenerative medicine[J]. Acta Neurobiol Exp (Wars), 2014,74(2):188-196.
[45] Kim DG, Huja SS, Tee BC , et al. Bone ingrowth and initial stability of titanium and porous tantalum dental implants: a pilot canine study[J]. Implant Dent, 2013,22(4):399-405.
doi: 10.1097/ID.0b013e31829b17b5
[46] Li J, Shi LL, Zhu ZD , et al. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular respo- nses[J]. Mater Sci Eng C Mater Biol Appl, 2013,33(4):2113-2121.
[47] Li J, Ai HJ . The responses of endothelial cells to Zr61 Ti2Cu25Al12 metallic glass in vitro and in vivo[J]. Mater Sci Eng C Mater Biol Appl, 2014,40:189-196.
[48] Regish KM, Sharma D, Prithviraj DR . An overview of immediate root analogue zirconia implants[J]. J Oral Implantol, 2013,39(2):225-233.
[49] 韩建民, 林红, 洪光 . 氧化锆种植体的动物及临床应用进展[J]. 中华口腔医学杂志, 2013,48(12):769-771.
Han JM, Lin H, Hong G . Zirconia dental implant: a review of literature on clinical application and animal studies[J]. Chin J Stomatol, 2013,48(12):769-771.
[50] Sanon C, Chevalier J, Douillard T , et al. A new testing protocol for zirconia dental implants[J]. Dent Mater, 2015,31(1):15-25.
[51] Assal PA . The osseointegration of zirconia dental implants[J]. Schweiz Monatsschr Zahnmed, 2013,123(7/8):644-654.
[52] Bankoğlu Güngör M, Aydın C, Yılmaz H , et al. An overview of zirconia dental implants: basic properties and clinical application of three cases[J]. J Oral Implantol, 2014,40(4):485-494.
doi: 10.1563/AAID-JOI-D-12-00109
[53] Gahlert M, Roehling S, Sprecher CM , et al. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae[J]. Clin Oral Implants Res, 2012,23(3):281-286.
[54] Winkelhoff A, Cune M . Zirconia dental implants: a clinical, radiographic, and microbiologic evaluation up to 3 years[J]. Int J Oral Maxillofac Implants, 2014,29(4):914-920.
[55] Chen YW, Moussi J, Drury JL , et al. Zirconia in biomedical applications[J]. Expert Rev Med Devices, 2016,13(10):945-963.
[56] Goyos-Ball L, García-Tuñón E, Fernández-García E , et al. Mechanical and biological evaluation of 3D printed 10CeTZP-Al2O3 structures[J]. J Eur Ceram Soc, 2017,37(9):3151-3158.
[57] Lopez-Píriz R, Fernández A, Goyos-Ball L , et al. Performance of a new Al2O3/Ce-TZP ceramic nanocomposite dental implant: a pilot study in dogs[J]. Materials (Basel), 2017,10(6). doi: 10.3390/ma10060614.
[58] Saadaldin SA, Dixon SJ, Costa DO , et al. Synjournal of bioactive and machinable miserite glass-ceramics for dental implant applications[J]. Dent Mater, 2013,29(6):645-655.
doi: 10.1016/j.dental.2013.03.013
[59] Saadaldin SA, Rizkalla AS . Synjournal and characterization of wollastonite glass-ceramics for dental implant applications[J]. Dent Mater, 2014,30(3):364-371.
doi: 10.1016/j.dental.2013.12.007
[60] Olofsson J, Grehk TM, Berlind T , et al. Evaluation of silicon nitride as a wear resistant and resorbable alternative for total hip joint replacement[J]. Biomatter, 2012,2(2):94-102.
[61] Webster TJ, Patel AA, Rahaman MN , et al. Anti-infective and osteointegration properties of silicon nitride, poly(ether ether ketone), and titanium im-plants[J]. Acta Biomater, 2012,8(12):4447-4454.
[62] Gorth DJ, Puckett S, Ercan B , et al. Decreased bacteria activity on Si3N4 surfaces compared with PEEK or titanium[J]. Int J Nanomedicine, 2012,7:4829-4840.
[63] Badran Z, Struillou X, Hughes FJ , et al. Silicon nitride (Si3N4) implants: the future of dental implantology[J]. J Oral Implantol, 2017,43(3):240-244.
[64] Schwitalla A, Müller WD . PEEK dental implants: a review of the literature[J]. J Oral Implantol, 2013,39(6):743-749.
[65] Wiesli MG, Özcan M . High-performance polymers and their potential application as medical and oral implant materials: a review[J]. Implant Dent, 2015,24(4):448-457.
[66] Al-Rabab’ah M, Hamadneh W, Alsalem I , et al. Use of high performance polymers as dental implant abutments and frameworks: a case series report[J]. J Prosthodont, 2017. doi: 10.1111/jopr.12639.
[67] Schwitalla AD, Spintig T, Kallage I , et al. Pressure behavior of different PEEK materials for dental implants[J]. J Mech Behav Biomed Mater, 2016,54:295-304.
[68] Almasi D, Iqbal N, Sadeghi M , et al. Preparation methods for improving PEEK’s bioactivity for orthopedic and dental application: a review[J]. Int J Biomater, 2016,2016:8202653.
[69] Najeeb S, Zafar MS, Khurshid Z , et al. Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics[J]. J Prosthodont Res, 2016,60(1):12-19.
[70] Ma R, Tang TT . Current strategies to improve the bioactivity of PEEK[J]. Int J Mol Sci, 2014,15(4):5426-5445.
[71] Wu XM, Liu XC, Wei J , et al. Nano-TiO2/PEEK bioactive composite as a bone substitute material: in vitro and in vivo studies[J]. Int J Nanomedicine, 2012,7:1215-1225.
[72] Wang LX, He S, Wu XM , et al. Polyetheretherketone/nano-fluorohydroxyapatite composite with antimicrobial activity and osseointegration properties[J]. Biomaterials, 2014,35(25):6758-6775.
doi: 10.1016/j.biomaterials.2014.04.085
[73] Wang X, Lu T, Wen J , et al. Selective responses of human gingival fibroblasts and bacteria on carbon fiber reinforced polyetheretherketone with multilevel nanostructured TiO2[J]. Biomaterials, 2016,83:207-218.
[74] Ayaz EA, Durkan R, Koroglu A , et al. Comparative effect of different polymerization techniques on residual monomer and hardness properties of PMMA- based denture resins[J]. J Appl Biomater Funct Mater, 2014,12(3):228-233.
[75] Cuijpers VMJI, Jaroszewicz J, Anil S , et al. Resolution, sensitivity, and in vivo application of high-resolution computed tomography for titanium-coated polymethyl methacrylate (PMMA) dental implants[J]. Clin Oral Implants Res, 2014,25(3):359-365.
[76] 李小东, 李新梅, 孙晓晨 , 等. 牙种植高分子材料聚甲基丙烯酸甲酯的生物相容性[J]. 中国组织工程研究, 2015,19(47):7613-7618.
Li XD, Li XM, Sun XC , et al. Biocompatibility of polymethylmethacrylate as a polymer material for dental implants[J]. Chin J Tissue Eng Res, 2015,19(47):7613-7618.
[77] Chu CN, Liu L, Wang YF , et al. Macrophage phenotype in the epigallocatechin-3-gallate (EGCG)-modified collagen determines foreign body reaction[J]. J Tissue Eng Regen Med, 2018,12(6):1499-1507.
[78] Chu CN, Deng J, Hou Y , et al. Application of PEG and EGCG modified collagen-base membrane to promote osteoblasts proliferation[J]. Mater Sci Eng C Mater Biol Appl, 2017,76:31-36.
[79] Chu CN, Deng J, Xiang L , et al. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts[J]. Mater Sci Eng C Mater Biol Appl, 2016,67:386-394.
[80] Chu CN, Deng J, Man Y , et al. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes[J]. Mater Sci Eng C Mater Biol Appl, 2017,78:258-264.
[1] 曹焜,李家锋,孙玉华,鲍强,卢秋宁,唐巍. 下颌下窝的锥形束CT影像分析[J]. 国际口腔医学杂志, 2019, 46(2): 209-212.
[2] 侯晔坡,高杰. Er:YAG激光照射对牙科陶瓷材料粘接影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(1): 68-72.
[3] 秦胜男,贾慧,李英. 聚醚醚酮在口腔临床中的应用现状[J]. 国际口腔医学杂志, 2018, 45(6): 652-656.
[4] 陈曦,于海洋. 聚醚醚酮在口腔种植与修复领域的研究进展[J]. 国际口腔医学杂志, 2018, 45(6): 657-665.
[5] 徐迅, 黄建生, 甘泽坤, 罗震. 上颌第一磨牙区腭侧骨板的锥形束CT测量结果及其临床意义[J]. 国际口腔医学杂志, 2017, 44(6): 686-690.
[6] 张雅蓉, 刘洋, 张玲, 于海洋. 不同切端设计的上前牙瓷贴面受载能力的定量研究[J]. 国际口腔医学杂志, 2017, 44(3): 301-303.
[7] 姚陈敏, 周丽群, 黄翠. 前牙磨耗牙色修复材料的选择[J]. 国际口腔医学杂志, 2017, 44(3): 363-367.
[8] 苟敏 蔡潇潇. 种植体—基台微间隙对种植体颈部周围骨的影响[J]. 国际口腔医学杂志, 2015, 42(6): 733-738.
[9] 刘伟 陈西文 朱智敏. 前牙氧化锆全瓷翼板粘接桥的短期临床观察[J]. 国际口腔医学杂志, 2014, 41(5): 530-535.
[10] 朱晓晶 王焱. 钛种植体表面共沉积钙磷-生物活性分子的研究进展[J]. 国际口腔医学杂志, 2014, 41(5): 617-620.
[11] 郭晶 甘抗 刘红. 聚醚醚酮复合材料及其表面改性后的成骨效能[J]. 国际口腔医学杂志, 2014, 41(4): 436-439.
[12] 陈苏林 王家伟. 不翻瓣口腔种植的研究现状[J]. 国际口腔医学杂志, 2014, 41(2): 187-190.
[13] 张强1 李英2. Ⅱ类骨质中平台转换种植体植入深度对周围骨应力影响的有限元分析[J]. 国际口腔医学杂志, 2014, 41(1): 31-35.
[14] 陈建宇1 张志光1 李子夫2. 选择性激光熔化技术在口腔医学领域中的应用[J]. 国际口腔医学杂志, 2014, 41(1): 97-101.
[15] 李励芸 魏文佳 孟翔峰. 长期水储存对玻璃陶瓷与牙本质间树脂粘接界面的影响[J]. 国际口腔医学杂志, 2013, 40(4): 436-439.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!