国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (6): 728-733.doi: 10.7518/gjkq.2018.06.018

• 综述 • 上一篇    下一篇

三维有限元在嵌体修复中的研究进展

黄璐,钱捷()   

  1. 昆明医科大学附属口腔医院修复科 昆明 650500
  • 收稿日期:2017-12-27 修回日期:2018-06-06 出版日期:2018-11-01 发布日期:2018-11-15
  • 通讯作者: 钱捷
  • 作者简介:黄璐,硕士,Email: 646120720@qq.com

Research progress on three dimensional finite element analysis method in inlay restorations

Lu Huang,Jie Qian()   

  1. Dept. of Prosthodontics, Affiliated Hospital of Stomatology, Kunming Medical University, Kunming 650500, China
  • Received:2017-12-27 Revised:2018-06-06 Online:2018-11-01 Published:2018-11-15
  • Contact: Jie Qian

摘要:

21世纪提出的微创修复理念已成为牙体缺损修复的发展方向,加之新的生物材料的研究和开发,嵌体已成为牙体缺损重要修复方式之一。三维有限元法从生物力学角度对牙体修复的研究提供了一种方便、有效的方法,为如何最大限度保存牙体组织,减少牙体折裂,延长修复体的寿命并优化其设计提供了理论依据。本文从有限元分析法在嵌体洞型、材料和粘接等方面的研究进行综述。

关键词: 有限元分析, 嵌体, 生物材料, 应力

Abstract:

Minimally invasive concept proposed in 21st century has become the development direction of tooth defect restoration. In the research and development of new biological materials, the use of inlay has become one of the preferred approaches to repair tooth defect. Three dimensional finite element method provides a convenient and effective method to study tooth restoration from the view of biomechanics, as well as maximize the preservation of teeth, reduce tooth fracture, prolong the restoration of life, and provide a theoretical basis for design optimization. This work reviewed finite element method, including the design of inlay cavity, material, and bonding layer.

Key words: finite element analysis, inlay, biological material, stress

中图分类号: 

  • R783.3
[1] Dietschi D, Spreafico R . Evidence-based concepts and procedures for bonded inlays and onlays. Part Ⅰ. Historical perspectives and clinical rationale for a biosubstitutive approach[J]. Int J Esthet Dent, 2015,10(2):210-227.
pmid: 25874270
[2] 尚晓江, 邱峰, 赵海峰 , 等. ANSYS结构有限元高级分析方法与范例应用[M]. 北京: 中国水利水电出版社, 2006: 9-29.
Shang XJ, Qiu F, Zhao HF , et al. Analysis method and example application of advanced ANSYS struc-ture finite element[M]. Beijing: Chin Water Res Hy-drop Press, 2006: 9-29.
[3] Thresher RW, Saito GE . The stress analysis of human teeth[J]. J Biomech, 1973,6(5):443-449.
doi: 10.1016/0021-9290(73)90003-1 pmid: 4748494
[4] Farah JW, Craig RG, Sikarskie DL . Photoelastic and finite element stress analysis of a restored axisym-metric first molar[J]. J Biomech, 1973,6(5):511-520.
doi: 10.1016/0021-9290(73)90009-2
[5] Yamanel K, Caglar A, Gülsahi K , et al. Effects of different ceramic and composite materials on stress distribution in inlay and onlay cavities: 3-D finite element analysis[J]. Dent Mater J, 2009,28(6):661-670.
doi: 10.4012/dmj.28.661 pmid: 20019416
[6] Ona M, Watanabe C, Igarashi Y , et al. Influence of preparation design on failure risks of ceramic inlays: a finite element analysis[J]. J Adhes Dent, 2011,13(4):367-373.
doi: 10.3290/j.jad.a19473 pmid: 20978646
[7] Durand LB, Guimarães JC, Monteiro Junior S , et al. Effect of ceramic thickness and composite bases on stress distribution of inlays—a finite element ana-lysis[J]. Braz Dent J, 2015,26(2):146-151.
doi: 10.1590/0103-6440201300258 pmid: 25831105
[8] 杨欣谕, 唐震, 蔚一博 . 上颌第一前磨牙MOD洞形设计对全瓷嵌体修复影响的三维有限元分析[J]. 口腔材料器械杂志, 2017,26(3):129-133, 148.
Yang XY, Tang Z, Wei YB . 3D finite element ana-lysis on the effect of MOD cavity design of maxil-lary first premolar on restoration with all ceramic inlays[J]. Chin J Dent Mater Devices, 2017,26(3):129-133, 148.
[9] Holberg C, Rudzki-Janson I, Wichelhaus A , et al. Ceramic inlays: is the inlay thickness an important factor influencing the fracture risk[J]. J Dent, 2013,41(7):628-635.
doi: 10.1016/j.jdent.2013.04.010 pmid: 23639702
[10] Mei M, Chen YM, Li H , et al. Influence of the in-direct restoration design on the fracture resistance: a finite element study[J]. Biomed Eng Online, 2016,15:3.
doi: 10.1186/s12938-015-0115-4 pmid: 26758615
[11] Santos MJ, Freitas MC, Azevedo LM , et al. Clinical evaluation of ceramic inlays and onlays fabricated with two systems: 12-year follow-up[J]. Clin Oral Investig, 2016,20(7):1683-1690.
doi: 10.2341/12-039-C pmid: 15088722
[12] Kantardzić I, Vasiljević D, Blazić L , et al. Influence of cavity design preparation on stress values in ma-xillary premolar: a finite element analysis[J]. Croat Med J, 2012,53(6):568-576.
doi: 10.3325/cmj.2012.53.568 pmid: 23275322
[13] Rocca GT, Rizcalla N, Krejci I , et al. Evidence-based concepts and procedures for bonded inlays and onlays. Part Ⅱ. Guidelines for cavity preparation and restora-tion fabrication[J]. Int J Esthet Dent, 2015,10(3):392-413.
[14] 王慧媛, 张春光, 刘玉红 , 等. 牙体预备对高嵌体修复下颌第一磨牙力学影响的初步研究[J]. 现代生物医学进展, 2013,13(34):6647-6649.
Wang HY, Zhang CG, Liu YH , et al. Primary re-search on the effects of tooth preparation on mandi-bular first molar with onlay restoration[J]. Prog Mod Biomed, 2013,13(34):6647-6649.
[15] 文成超 . 全瓷嵌体修复MOD洞型对牙体组织应力分布的三维有限元分析[D]. 沈阳: 中国医科大学, 2015.
Wen CC . Three dimension finite element analysis on stress distribution of tooth using all-ceramic inlay restoration with designed MOD cavities[D]. Shen-yang: Chinese Medical university, 2015.
[16] 侯波, 朱龙军, 曾健 , 等. 根管治疗后高嵌体修复MOD洞型的三维有限元分析[J]. 医药前沿, 2016,6(5):184-185.
Hou B, Zhu LJ, Zeng J , et al. Three dimensional finite element analysis of the MOD cavity in the treatment of the onlay after the root canal therapy[J]. Front Med, 2016,6(5):184-185.
[17] 冯娟, 郭慧慧, 申晋斌 , 等. 磨牙髓室底垫底厚度对全瓷嵌体冠应力分布的影响[J]. 牙体牙髓牙周病学杂志, 2017,27(1):16-21.
doi: 10.15956/j.cnki.chin.j.conserv.dent.2017.01.004
Feng J, Guo HH, Shen JB , et al. Effects of cement thickness on the stress distribution of full-ceramic-endocrown restoration: a finite element analysis[J]. Chin J Conserv Dent, 2017,27(1):16-21.
doi: 10.15956/j.cnki.chin.j.conserv.dent.2017.01.004
[18] 张丹, 白保晶, 张振庭 . 垫底厚度对全瓷嵌体修复应力分布影响的三维有限元分析[J]. 北京口腔医学, 2015,23(2):105-108.
Zhang D, Bai BJ, Zhang ZT . Three dimension finite element analysis of different base thickness on stress distribution of ceramic inlay[J]. Beijing J Stomatol, 2015,23(2):105-108.
[19] 张丹, 白保晶, 张振庭 . 不同垫底材料对全瓷嵌体修复应力分布影响的三维有限元研究[J]. 北京口腔医学, 2011,19(2):82-84.
doi: 10.3969/j.issn.1006-673X.2011.02.007
Zhang D, Bai BJ, Zhang ZT . Three-dimension finite element analysis of influence of different base ma-terials on stress distribution of ceramic inlay[J]. Beijing J Stomatol, 2011,19(2):82-84.
doi: 10.3969/j.issn.1006-673X.2011.02.007
[20] 缪羽, 吴凯敏, 于蕴之 , 等. 不同边缘设计的聚合瓷高嵌体修复后牙体组织的有限元应力分析[J]. 现代口腔医学杂志, 2011,25(6):440-445.
Miu Y, Wu KM, Yu YZ , et al. Finite element stress analysis on the tooth tissue repaired with polymerized porcelain onlay with different designs of marginal preparation[J]. J Mod Stomatol, 2011,25(6):440-445.
[21] Trindade FZ , Valandro LF, de Jager N, et al. Elastic properties of lithium disilicate versus feldspathic inlays: effect on the bonding by 3D finite element analysis[J]. J Prosthodont, 2016. doi: 10.1111/jopr.12550.
doi: 10.1111/jopr.12550 pmid: 27696615
[22] 陆晓丰, 吴凤鸣, 朱凯旋 . 不同负载下多种嵌体材料修复磨牙OD洞的有限元分析[J]. 南京医科大学学报(自然科学版), 2014,34(3):378-381.
doi: 10.7655/NYDXBNS20140324
Lu XF, Wu FM, Zhu KX . Finite element analysis on molar with OD holes repaired with various inlay materials under different loads[J]. J Nanjing Med Univ (Nat Sci), 2014,34(3):378-381.
doi: 10.7655/NYDXBNS20140324
[23] Ma L, Guess PC, Zhang Y . Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses[J]. Dent Mater, 2013,29(7):742-751.
doi: 10.1016/j.dental.2013.04.004 pmid: 3698988
[24] 刘小嘉, 吴敏节 . 有限元法在不同嵌体材料修复中的应力分析[J]. 华南国防医学杂志, 2014,28(3):202-205, 208.
Liu XJ, Wu MJ . Stress analysis in repair of different inlay materials using finite element method[J]. Milit Med J South Chin, 2014,28(3):202-205, 208.
[25] 张珑, 李芳萍, 杨柏松 , 等. 不同材料嵌体修复邻(Ⅱ类)洞型的三维有限元研究[J]. 西安交通大学学报(医学版), 2015,36(2):201-205, 214.
doi: 10.7652/jdyxb201502011
Zhang L, Li FP, Yang BS , et al. Three-dimensional finite element stress of the medial-occlusal (Class Ⅱ) cavity restored with different inlay[J]. J Xi’an Jiaotong Univ (Med Sci), 2015,36(2):201-205, 214.
doi: 10.7652/jdyxb201502011
[26] Soares CJ, Bicalho AA, Verissimo C , et al. Delayed photo-activation effects on mechanical properties of dual cured resin cements and finite element analysis of shrinkage stresses in teeth restored with ceramic inlays[J]. Oper Dent, 2016,41(5):491-500.
doi: 10.2341/15-090-L pmid: 26794188
[27] Cornacchia TP, Las Casas EB, Cimini CA Jr , et al. 3D finite element analysis on esthetic indirect dental restorations under thermal and mechanical loading[J]. Med Biol Eng Comput, 2010,48(11):1107-1113.
doi: 10.1007/s11517-010-0661-7 pmid: 20635221
[28] Çelik Köycü B, Imirzalioğlu P, Özden UA . Three-dimensional finite element analysis of stress distri-bution in inlay-restored mandibular first molar under simultaneous thermomechanical loads[J]. Dent Mater J, 2016,35(2):180-186.
doi: 10.4012/dmj.2014-341 pmid: 27041006
[29] Pishevar L, Ghavam M, Pishevar A . Stress analysis of two methods of ceramic inlay preparation by finite element[J]. Indian J Dent Res, 2014,25(3):364-369.
doi: 10.4103/0970-9290.138339 pmid: 25098996
[30] 张珑, 逯宜, 杨柏松 , 等. CBCT扫描结合逆向工程软件建立邻嵌体洞型三维有限元模型研究[J]. 中国美容医学, 2011,20(10):1562-1565.
doi: 10.3969/j.issn.1008-6455.2011.10.031
Zhang L, Lu Y, Yang BS , et al. Study on CBCT scan combined with reverse engineering software to esta-blish three-dimensional finite element model of meiso-occlusal inlay cavity[J]. Chin J Aesth Med, 2011,20(10):1562-1565.
doi: 10.3969/j.issn.1008-6455.2011.10.031
[31] Scarfe WC, Farman AG, Sukovic P . Clinical applica-tions of cone-beam computed tomography in dental practice[J]. J Can Dent Assoc, 2006,72(1):75-80.
[32] 陈婧娉 . 有限元法在嵌体修复中的应用现状和研究进展[J]. 国际口腔医学杂志, 2010,37(6):707-710.
doi: 10.3969/j.issn.1673-5749.2010.06.024
Chen JP . The application situation and research progress on finite element method in inlay restora-tion[J]. Int J Stomatol, 2010,37(6):707-710.
doi: 10.3969/j.issn.1673-5749.2010.06.024
[1] 孙晓倩, 张军. 机械力环境影响头颈癌生物学行为及作用机制的研究进展[J]. 国际口腔医学杂志, 2023, 50(4): 414-418.
[2] 黄依欢,李委航,马典,陈瑾,钱捷,李旭东. IPS e.maxCAD和Lava Ultimate在贴面修复中的有限元分析[J]. 国际口腔医学杂志, 2023, 50(4): 423-432.
[3] 王剑. 浅谈嵌体和高嵌体修复的临床应用[J]. 国际口腔医学杂志, 2021, 48(5): 497-505.
[4] 方苓力,谭玺,叶雨丝,黄兰,何瑶. 颞下颌关节退行性变早期髁突软骨细胞行为改变的实验研究[J]. 国际口腔医学杂志, 2021, 48(4): 417-425.
[5] 孟秀萍,侯建华,李怡然,孙梦瑶. 龈壁提升术材料选择及边缘设计的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 280-286.
[6] 陈克难,郭传瑸. 可降解医用镁基金属生物材料的研究进展[J]. 国际口腔医学杂志, 2021, 48(3): 322-328.
[7] 季梦真,漆美瑶,杜珂芯,全淑琪,张煜强,郑庆华. 开髓洞型对全冠修复后隐裂牙抗力影响的三维有限元研究[J]. 国际口腔医学杂志, 2021, 48(1): 41-49.
[8] 李静雅,税钰森,郭永文. 循环牵张应力影响人牙周膜细胞成骨分化机制的研究进展[J]. 国际口腔医学杂志, 2020, 47(6): 652-660.
[9] 陈昕,毛渤淳,鲁雨晴,董博,朱卓立,岳莉,于海洋. 钴铬合金和聚醚醚酮用于可摘局部义齿支架的三维有限元分析[J]. 国际口腔医学杂志, 2019, 46(5): 526-531.
[10] 颜丹,张锡忠,王建国. 螺纹深度对支抗微种植体和颌骨影响的三维有限元分析[J]. 国际口腔医学杂志, 2019, 46(4): 387-392.
[11] 秦胜男,贾慧,李英. 聚醚醚酮在口腔临床中的应用现状[J]. 国际口腔医学杂志, 2018, 45(6): 652-656.
[12] 曾婷艳, 黄生高. 种植体支抗稳定性的三维有限元分析[J]. 国际口腔医学杂志, 2018, 45(1): 112-118.
[13] 张晓, 邓青完, 杜琼, 谢静. 主桩辅桩联合修复对前磨牙应力的有限元分析[J]. 国际口腔医学杂志, 2017, 44(5): 559-565.
[14] 曹国庆, 王林霞, 杜莉平. 有限元法在桩核冠修复研究中的应用[J]. 国际口腔医学杂志, 2017, 44(2): 209-213.
[15] 颜丹,张锡忠,王增全,王建国,关泽建. 螺距对支抗微种植体—骨界面影响的三维有限元分析[J]. 国际口腔医学杂志, 2015, 42(5): 557-561.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 王昆润. 长期单侧鼻呼吸对头颅发育有不利影响[J]. 国际口腔医学杂志, 1999, 26(05): .
[3] 彭国光. 颈淋巴清扫术中颈交感神经干的解剖变异[J]. 国际口腔医学杂志, 1999, 26(05): .
[4] 杨凯. 淋巴化疗的药物运载系统及其应用现状[J]. 国际口腔医学杂志, 1999, 26(05): .
[5] 康非吾. 种植义齿下部结构生物力学研究进展[J]. 国际口腔医学杂志, 1999, 26(05): .
[6] 柴枫. 可摘局部义齿用Co-Cr合金的激光焊接[J]. 国际口腔医学杂志, 1999, 26(04): .
[7] 孟姝,吴亚菲,杨禾. 伴放线放线杆菌产生的细胞致死膨胀毒素及其与牙周病的关系[J]. 国际口腔医学杂志, 2005, 32(06): 458 -460 .
[8] 费晓露,丁一,徐屹. 牙周可疑致病菌对口腔黏膜上皮的粘附和侵入[J]. 国际口腔医学杂志, 2005, 32(06): 452 -454 .
[9] 赵兴福,黄晓晶. 变形链球菌蛋白组学研究进展[J]. 国际口腔医学杂志, 2008, 35(S1): .
[10] 庞莉苹,姚江武. 抛光和上釉对陶瓷表面粗糙度、挠曲强度及磨损性能的影响[J]. 国际口腔医学杂志, 2008, 35(S1): .