国际口腔医学杂志 ›› 2018, Vol. 45 ›› Issue (5): 516-521.doi: 10.7518/gjkq.2018.05.004

• 种植专栏 • 上一篇    下一篇

抗菌性口腔种植材料的研究进展

刘梦齐,盖阔,蒋丽()   

  1. 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院全科门诊 成都 610041
  • 收稿日期:2017-09-03 修回日期:2018-04-26 出版日期:2018-09-01 发布日期:2018-09-20
  • 通讯作者: 蒋丽 E-mail:echojiang999@gmail.com
  • 作者简介:刘梦齐,学士,Email:1398978475@qq.com
  • 基金资助:
    国家自然科学基金(31200720);四川省科技计划项目(2016FZ0069)

Research progress on oral implant materials with antimicrobial properties

Mengqi Liu,Kuo Gai,Li Jiang()   

  1. State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2017-09-03 Revised:2018-04-26 Online:2018-09-01 Published:2018-09-20
  • Contact: Li Jiang E-mail:echojiang999@gmail.com
  • Supported by:
    This study was supported by National Natural Science Foundation of China(31200720);Sichuan Science and Technology Program(2016FZ0069)

摘要:

种植牙因其舒适美观、稳固牢靠、不损伤邻牙等优点,受到人们的广泛关注。但由于缺乏天然牙那样相对完备的免疫防御系统,往往对细菌感染的抵抗力较弱。由此引发的种植体周围炎是导致种植失败的重要原因之一。为了降低种植体相关感染的发生率从而减少种植并发症,提高种植体本身的抗菌性成为目前研究的热点。本文针对近年来有关抗菌性口腔种植材料的研究作一综述,从材料组成、表面改性与抗菌涂层等方面归纳各方法的特点及抗菌效果,为抗菌性口腔种植材料的研究和临床应用提供参考。

关键词: 口腔种植, 抗菌性, 细菌黏附, 材料组成, 表面改性, 抗菌涂层

Abstract:

Dental implants have attracted widespread attention because of their many advantages, which include comfort, beauty, stability, reliability, and no damage to adjacent teeth. However, unlike natural teeth, dental implants usually present weak resistance to bacterial infection due to their lack of a complete immune defense system. Peri-implantitis is one of the major causes of implant failure. To decrease the incidence of oral implant-related infection and complications, enhancing the antibacterial properties of the implants is important. This paper reviews the research status of dental implant materials with antibacterial properties. It summarizes the characteristics and antibacterial effects of various methods from the aspects of material composition, surface modification, and antibacterial coating. This work seeks to provide a reference for future research and the clinical applications of oral implant materials with antibacterial properties.

Key words: dental implant, antibacterial property, bacterial adhesion, material composition, surface modification, antibacterial coating

中图分类号: 

  • R783.1
[1] Klinge B, Meyle J , Working Group 2. Peri-implant tissue destruction. The Third EAO Consensus Con-ference 2012[J]. Clin Oral Implants Res, 2012,23(Suppl 6):108-110.
doi: 10.1111/j.1600-0501.2012.02550.x pmid: 23062134
[2] De Giglio E, Cafagna D, Cometa S , et al. An innova-tive, easily fabricated, silver nanoparticle-based ti-tanium implant coating: development and analytical characterization[J]. Anal Bioanal Chem, 2013,405(2/3):805-816.
doi: 10.1007/s00216-012-6293-z
[3] Al-Radha AS, Dymock D, Younes C , et al. Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion[J]. J Dent, 2012,40(2):146-153.
doi: 10.1016/j.jdent.2011.12.006
[4] Roehling S, Astasov-Frauenhoffer M , Hauser-Ger-spach I, et al. In vitro biofilm formation on titanium and zirconia implant surfaces[J]. J Periodontol, 2017,88(3):298-307.
doi: 10.1902/jop.2016.160245 pmid: 27712464
[5] Mei L, van der Mei HC, Ren YJ , et al. Poisson analysis of streptococcal bond strengthening on stainless steel with and without a salivary conditioning film[J]. Lan-gmuir, 2009,25(11):6227-6231.
[6] Egawa M, Miura T, Kato T , et al. In vitro adherence of periodontopathic bacteria to zirconia and titanium surfaces[J]. Dent Mater J, 2013,32(1):101-106.
doi: 10.4012/dmj.2012-156 pmid: 23370877
[7] Lorenzetti M, Dogša I, Stošicki T , et al. The in-fluence of surface modification on bacterial adhesion to titanium-based substrates[J]. ACS Appl Mater Interfaces, 2015,7(3):1644-1651.
doi: 10.1021/am507148n pmid: 25543452
[8] Perera-Costa D, Bruque JM, González-Martín ML , et al. Studying the influence of surface topography on bacterial adhesion using spatially organized microtopographic surface patterns[J]. Langmuir, 2014,30(16):4633-4641.
doi: 10.1021/la5001057
[9] Zhang XX, Wang L, Levänen E , Superhydrophobic surfaces for the reduction of bacterial adhesion[J]. RSC Advances, 2013,3(30):12003-12020.
doi: 10.1039/c3ra40497h
[10] Pogodin S, Hasan J, Baulin VA , et al. Biophysical model of bacterial cell interactions with nanopat-terned cicada wing surfaces[J]. Biophys J, 2013,104(4):835-840.
doi: 10.1016/j.bpj.2012.12.046 pmid: 23442962
[11] Perni S, Prokopovich P , Micropatterning with conical features can control bacterial adhesion on silicone[J]. Soft Matter, 2013,9(6):1844-1851.
doi: 10.1039/c2sm26828k
[12] Chebolu A, Laha B, Ghosh M , et al. Investigation on bacterial adhesion and colonisation resistance over laser-machined micro patterned surfaces[J]. Micro Nano Lett, 2013,8(6):280-283.
doi: 10.1049/mnl.2013.0109
[13] Scacchi M , The development of the ITI Dental Im-plant System. Part 1: a review of the literature[J]. Clin Oral Implants Res, 2000,11(Suppl 1):8-21.
doi: 10.1034/j.1600-0501.2000.011S1008.x
[14] Dorkhan M, Hall J, Uvdal P , et al. Crystalline ana-tase-rich titanium can reduce adherence of oral Streptococci[J]. Biofouling, 2014,30(6):751-759.
doi: 10.1080/08927014.2014.922962 pmid: 24881929
[15] de Avila ED, Lima B, Sekiya T , et al. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material[J]. Biomaterials, 2015,67:84-92.
doi: 10.1016/j.biomaterials.2015.07.030
[16] Chan CW, Carson L, Smith GC , et al. Enhancing the antibacterial performance of orthopaedic implant materials by fibre laser surface engineering[J]. Appl Surf Sci, 2017,404:67-81.
doi: 10.1016/j.apsusc.2017.01.233
[17] Krasowska A, Sigler K , How microorganisms use hydrophobicity and what does this mean for human needs[J]. Front Cell Infect Microbiol, 2014,4:112.
doi: 10.3389/fcimb.2014.00112 pmid: 4137226
[18] Kuehl R, Brunetto PS, Woischnig AK , et al. Preven-ting implant-associated infections by silver coating[J]. Antimicrob Agents Chemother, 2016,60(4):2467-2475.
doi: 10.1128/AAC.02934-15 pmid: 26883700
[19] Godoy-Gallardo M, Manzanares-Céspedes MC, Sevilla P , et al. Evaluation of bone loss in antibacterial coated dental implants: an experimental study in dogs[J]. Mater Sci Eng C Mater Biol Appl, 2016,69:538-545.
doi: 10.1016/j.msec.2016.07.020 pmid: 27612745
[20] Kvítek L, Panáček A, Soukupová J , et al. Effect of surfactants and polymers on stability and anti-bacterial activity of silver nanoparticles (NPs)[J]. J Phys Chem C, 2008,112(15):5825-5834.
doi: 10.1021/jp711616v
[21] Memarzadeh K, Sharili AS, Huang J , et al. Nanopar-ticulate zinc oxide as a coating material for orthopedic and dental implants[J]. J Biomed Mater Res A, 2015,103(3):981-989.
doi: 10.1002/jbm.a.35241 pmid: 24862288
[22] Dybowska-Sarapuk Ł, Kotela A, Krzemiński J , et al. Graphene nanolayers as a new method for bacterial biofilm prevention: preliminary results[J]. J AOAC Int, 2017,100(4):900-904.
doi: 10.5740/jaoacint.17-0164 pmid: 28623661
[23] Godoy-Gallardo M, Guillem-Marti J, Sevilla P , et al. Anhydride-functional silane immobilized onto ti-tanium surfaces induces osteoblast cell differentia-tion and reduces bacterial adhesion and biofilm formation[J]. Mater Sci Eng C Mater Biol Appl, 2016,59:524-532.
doi: 10.1016/j.msec.2015.10.051
[24] Gosau M, Haupt M, Thude S , et al. Antimicrobial effect and biocompatibility of novel metallic nano-crystalline implant coatings[J]. J Biomed Mater Res Part B Appl Biomater, 2016,104(8):1571-1579.
[25] Ferraris S, Spriano S , Antibacterial titanium surfaces for medical implants[J]. Mater Sci Eng C Mater Biol Appl, 2016,61:965-978.
doi: 10.1016/j.msec.2015.12.062 pmid: 26838926
[26] He S, Zhou P, Wang LX , et al. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant[J]. J R Soc Interface, 2014,11(95):20140169.
doi: 10.1098/rsif.2014.0169
[27] Massa MA, Covarrubias C, Bittner M , et al. Synjournal of new antibacterial composite coating for titanium based on highly ordered nanoporous silica and silver nanoparticles[J]. Mater Sci Eng C Mater Biol Appl, 2014,45:146-153.
doi: 10.1016/j.msec.2014.08.057
[28] Govindharajulu JP, Chen X, Li YP , et al. Chitosan-recombinamer layer-by-layer coatings for multifunc-tional implants[J]. Int J Mol Sci, 2017,18(2):369.
doi: 10.3390/ijms18020369 pmid: 5343904
[29] Lv HB, Chen Z, Yang XP , et al. Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation[J]. J Dent, 2014,42(11):1464-1472.
doi: 10.1016/j.jdent.2014.06.003
[30] Costa EM, Silva S, Tavaria FK , et al. Study of the effects of chitosan upon Streptococcus mutans ad-herence and biofilm formation[J]. Anaerobe, 2013,20:27-31.
doi: 10.1016/j.anaerobe.2013.02.002 pmid: 23454497
[31] Junter GA, Thébault P, Lebrun L , Polysaccharide-based antibiofilm surfaces[J]. Acta Biomater, 2016,30:13-25.
doi: 10.1016/j.actbio.2015.11.010 pmid: 26555378
[32] Hoven VP, Tangpasuthadol V, Angkitpaiboon Y , et al. Surface-charged chitosan: preparation and protein adsorption[J]. Carbohydr Polym, 2007,68(1):44-53.
doi: 10.1016/j.carbpol.2006.07.008
[33] Münch D, Engels I, Müller A , et al. Structural variations of the cell wall precursor lipid Ⅱ and their influence on binding and activity of the lipoglycope-ptide antibiotic oritavancin[J]. Antimicrob Agents Chemother, 2015,59(2):772-781.
doi: 10.1128/AAC.02663-14
[34] Holmberg KV, Abdolhosseini M, Li YP , et al. Bio-inspired stable antimicrobial peptide coatings for dental applications[J]. Acta Biomater, 2013,9(9):8224-8231.
doi: 10.1016/j.actbio.2013.06.017 pmid: 3758876
[35] Godoy-Gallardo M, Mas-Moruno C, Fernández-Calderón MC , et al. Covalent immobilization of hLf1-11 peptide on a titanium surface reduces bac-terial adhesion and biofilm formation[J]. Acta Bio-mater, 2014,10(8):3522-3534.
doi: 10.1016/j.actbio.2014.03.026
[36] Kazemzadeh-Narbat M, Lai B, Ding CF , et al. Multi-layered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections[J]. Biomaterials, 2013,34(24):5969-5977.
doi: 10.1016/j.biomaterials.2013.04.036
[37] Chen X, Zhou XC, Liu S , et al. In vivo osseointe-gration of dental implants with an antimicrobial peptide coating[J]. J Mater Sci Mater Med, 2017,28(5):76.
doi: 10.1007/s10856-017-5885-8
[38] Kaplan JB , Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses[J]. J Dent Res, 2010,89(3):205-218.
doi: 10.1078/072320203322346137 pmid: 20139339
[1] 冯旭,张祎,李梦红,刘楠,王六一,胡敏. 无托槽隐形矫治对牙周健康影响的研究进展[J]. 国际口腔医学杂志, 2019, 46(2): 166-170.
[2] 曾越, 夏海斌, 王敏. 纳米材料改良义齿基托力学性能及抗菌性能的研究进展[J]. 国际口腔医学杂志, 2018, 45(4): 455-458.
[3] 陈青娅, 黄茜, 王黎. 口腔种植患者牙科焦虑的调查分析[J]. 国际口腔医学杂志, 2018, 45(1): 14-19.
[4] 万双全, 邓飞龙. 上皮下结缔组织瓣在种植软组织缺陷中的应用[J]. 国际口腔医学杂志, 2018, 45(1): 68-73.
[5] 盖阔, 郝丽英, 蒋丽. 应用原子力显微镜对口腔变异链球菌黏附机制的研究[J]. 国际口腔医学杂志, 2017, 44(3): 320-324.
[6] 赵夫健,王臻石,石连水. 托槽表面抗菌改性的研究现状[J]. 国际口腔医学杂志, 2016, 43(2): 239-243.
[7] 郑赛男,蒋丽,李伟. 口腔细菌黏附机制的研究进展[J]. 国际口腔医学杂志, 2016, 43(2): 223-227.
[8] 王晓娜 赵静辉 储顺礼 周延民. 骨替代材料在口腔种植领域中的成骨效果[J]. 国际口腔医学杂志, 2016, 43(1): 113-.
[9] 杜桥 牛光良. 氧化锆的表面粗化和改性[J]. 国际口腔医学杂志, 2015, 42(1): 97-101.
[10] 林曦,周磊. 纯钛种植体表面特征的研究进展[J]. 国际口腔医学杂志, 2014, 41(6): 677-680.
[11] 庄秀妹 邓飞龙. 钛表面及其涂层纳米化对骨结合的影响和机制[J]. 国际口腔医学杂志, 2014, 41(4): 427-430.
[12] 郭晶 甘抗 刘红. 聚醚醚酮复合材料及其表面改性后的成骨效能[J]. 国际口腔医学杂志, 2014, 41(4): 436-439.
[13] 雷文龙1 施斌1,2. 血小板衍生生长因子-BB在口腔种植领域中的作用[J]. 国际口腔医学杂志, 2014, 41(2): 199-203.
[14] 李晓宁综述 樊明文 杨雪超审校. 牙髓病治疗新材料BioAggregate的研究进展[J]. 国际口腔医学杂志, 2013, 40(4): 471-472.
[15] 苏伟珠1 王浙君1 撒悦1综述 王贻宁1,2审校. 漂白剂对复合树脂的影响[J]. 国际口腔医学杂志, 2012, 39(4): 537-539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张京剧. 青年期至中年期颅面复合体变化的头影测量研究[J]. 国际口腔医学杂志, 1999, 26(06): .
[2] 刘玲. 镍铬合金中铍对可铸造性和陶瓷金属结合力的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[3] 王昆润. 修补颌骨缺损的新型生物学相容材料[J]. 国际口腔医学杂志, 1999, 26(06): .
[4] 汤庆奋,王学侠. 17β-雌二醇对人类阴道和口腔颊粘膜的渗透性[J]. 国际口腔医学杂志, 1999, 26(06): .
[5] 王昆润. 咀嚼口香糖对牙周组织微循环的影响[J]. 国际口腔医学杂志, 1999, 26(06): .
[6] 宋红. 青少年牙周炎外周血分叶核粒细胞的趋化功能[J]. 国际口腔医学杂志, 1999, 26(06): .
[7] 高卫民,李幸红. 发达国家牙医学院口腔种植学教学现状[J]. 国际口腔医学杂志, 1999, 26(06): .
[8] 张新春. 桩冠修复与无髓牙的保护[J]. 国际口腔医学杂志, 1999, 26(06): .
[9] 温秀杰. 氟化物对牙本质脱矿抑制作用的体外实验研究[J]. 国际口腔医学杂志, 1999, 26(05): .
[10] 轩东英. 不同赋形剂对氢氧化钙抗菌效果的影响[J]. 国际口腔医学杂志, 1999, 26(05): .