Inter J Stomatol ›› 2014, Vol. 41 ›› Issue (1): 92-96.doi: 10.7518/gjkq.2014.01.021

Previous Articles     Next Articles

Differential proteomics of Streptococcus mutans under stress condition

Huang Ping, Wan Huchun, He Yonghong.   

  1. State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2013-04-24 Revised:2013-08-12 Online:2014-01-01 Published:2014-01-01

Abstract:

When external environment changes, Streptococcus mutans(S.mutans) can change its protein expression profile through induction or inhibition of some protein expressions to ensure survival in extreme environments. Under pH 5.5 and aerobic condition, the protein expression of S.mutans changes rapidly in a complicated manner by increasing or decreasing. The extracellular high osmotic pressure of bacteria can induce S.mutans to adjust its physiological function by activating or inactivating some special enzymes and transport proteins and changing the gene expression profile. When cultivated under high osmotic pressure, protein points of S.mutans may be increased or reduced. Adequate nutrition is very important for the growth of S.mutans. To adapt to lack of nutrition, cell size and composition of S.mutans fatty acid change with decrease in total synthesis rate of proteins. When environment temperature changes, the cells will produce denatured or abnormal proteins with increased or reduced expressions. The heat shock protein produced can induce protein peptides to refold; it can also restore the original conformation and function of proteins. Some Chinese herbal medicine extracts can significantly reduce the protein expression of S.mutans. With the application of proteomics techniques, changes in S.mutans protein expression pattern can be found under different stress states. These techniques reveal information on the mechanism of S.mutans to caries and provide a scientific basis for prevention and control of caries.

Key words: Streptococcus mutans, proteomics, stress response


TrendMD: 
[1] Gong Tao,Li Yuqing,Zhou Xuedong.. Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans [J]. Int J Stomatol, 2022, 49(5): 506-510.
[2] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[3] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
[4] Gai Kuo, Hao Liying, Jiang Li.. Study of the adhesion mechanism of oral Streptococcus mutans based on atomic force microscope [J]. Inter J Stomatol, 2017, 44(3): 320-324.
[5] Liu Shiyu, He Jinzhi, Li Mingyun.. Saccharomyces albicans: its dental caries correlation and mechanism [J]. Inter J Stomatol, 2017, 44(1): 103-107.
[6] Liu Kun, Hou Benxiang.. Biological activity of Enterococcus faecalis and Streptococcus mutans lipoteichoic acid [J]. Inter J Stomatol, 2017, 44(1): 118-124.
[7] Zhang Ying, Li Mingyong, Huo Li, Meng Yuan. Biosynthesis of autoinducer-2 and determination of its bioactivity in vitro [J]. Inter J Stomatol, 2016, 43(5): 519-523.
[8] Zhao Xingfu, Jiang Shan, Huang Xiaojing, Yan Fuhua. Differential expression of surface-associated proteins in clinical isolations of Streptococcus mutans [J]. Inter J Stomatol, 2016, 43(3): 273-277.
[9] Wang Yizhou, Zhang Yaqi, Niu Xuewei, Zhang Zhimin. The groE operon of Streptococcus mutans with its expression and regulation [J]. Inter J Stomatol, 2016, 43(3): 348-351.
[10] Shi Jing, Yan Zhengbin, Hou Jingqiu, Peng Hui. Influence of bracketless invisible aligner technique and conventional technique on the number of Streptococcus mutans and Porphyromonas gingivalis [J]. Inter J Stomatol, 2016, 43(2): 151-154.
[11] Liu Yi1, Fei Wei1, Wang Lina2, Zhang Siyu3, Wang Yanjun1, Wu Hongkun4.. Effects of synthetic antimicrobial decapeptide on the growth and structure of Streptococcus mutans biofilm [J]. Inter J Stomatol, 2015, 42(4): 401-405.
[12] Song Ying, Zou Ling.. Structure, function, and control strategies of collagen and laminin-binding protein [J]. Inter J Stomatol, 2015, 42(4): 466-470.
[13] Zhang Jianying, Ling Junqi. Function of surface protein antigen P in the biofilm formation of Streptococcus mutans [J]. Inter J Stomatol, 2015, 42(1): 111-113.
[14] Fang Li, Liu Yuan, Yang Ran, Zou Jing. Comparison of Streptococcus mutans in saliva before and after dental caries filling with resin-based composite [J]. Inter J Stomatol, 2015, 42(1): 28-30.
[15] Yang Ningning, He Kuifang.. Three-dimensional structure and related functional epitopes of the surface protein of oral streptococci [J]. Inter J Stomatol, 2013, 40(5): 670-673.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .