Inter J Stomatol ›› 2015, Vol. 42 ›› Issue (1): 111-113.doi: 10.7518/gjkq.2015.01.027

Previous Articles     Next Articles

Function of surface protein antigen P in the biofilm formation of Streptococcus mutans

Zhang Jianying, Ling Junqi   

  1. Dept. of Conservative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
  • Online:2015-01-01 Published:2015-01-01

Abstract:

Surface protein antigen(SPA) P is an important virulence factor with high conservation that serves a vital function in mediating the adhesion and biofilm formation of Streptococcus mutans(S.mutans). The SPAP linear sequence comprises a leader peptide, N-terminal, A, V, P, and C-terminal regions, and a cell wall-anchoring segment counting up to 1 561 amino acid residues. The SPAP has an amyloid fibrous property and is thus important in the biofilm formation process. SPAP is closely associated with the development of dental caries because of its interaction with host salivary components, matrix proteins, and other microorganisms. The SPAP covalently combines with the cell wall of S.mutans under the influence of sortase. S.mutans also produces a surface protein-releasing enzyme that degrades SPAP and mediates cell release from biofilms. This review describes the structure and the amyloid fibrous property of SPAP with emphases on studies aiming to characterize the effects of SPAP on S.mutans biofilm formation. This review also aims to identify biological characteristic cues in etiology and potential therapeutic applications of dental caries.

Key words: surface protein antigen P, Streptococcus mutans, biofilm formation


TrendMD: 
[1] Gong Tao,Li Yuqing,Zhou Xuedong.. Research progress on sugar transporter and regulatory mechanisms in Streptococcus mutans [J]. Int J Stomatol, 2022, 49(5): 506-510.
[2] Li Shanshan,Yang Fang. Research progress on the relationship between Streptococcus mutans and Candida albicans in caries [J]. Int J Stomatol, 2022, 49(4): 392-396.
[3] Jing Wang,Yan Wang,Chuandong Wang,Ruijie Huang,Yan Tian,Wei Hu,Jing Zou. Application of liquorice and its extract to the prevention and treatment of oral infections and associated diseases [J]. Inter J Stomatol, 2018, 45(5): 546-552.
[4] Gai Kuo, Hao Liying, Jiang Li.. Study of the adhesion mechanism of oral Streptococcus mutans based on atomic force microscope [J]. Inter J Stomatol, 2017, 44(3): 320-324.
[5] Liu Kun, Hou Benxiang.. Biological activity of Enterococcus faecalis and Streptococcus mutans lipoteichoic acid [J]. Inter J Stomatol, 2017, 44(1): 118-124.
[6] Liu Shiyu, He Jinzhi, Li Mingyun.. Saccharomyces albicans: its dental caries correlation and mechanism [J]. Inter J Stomatol, 2017, 44(1): 103-107.
[7] Zhang Ying, Li Mingyong, Huo Li, Meng Yuan. Biosynthesis of autoinducer-2 and determination of its bioactivity in vitro [J]. Inter J Stomatol, 2016, 43(5): 519-523.
[8] Zhao Xingfu, Jiang Shan, Huang Xiaojing, Yan Fuhua. Differential expression of surface-associated proteins in clinical isolations of Streptococcus mutans [J]. Inter J Stomatol, 2016, 43(3): 273-277.
[9] Wang Yizhou, Zhang Yaqi, Niu Xuewei, Zhang Zhimin. The groE operon of Streptococcus mutans with its expression and regulation [J]. Inter J Stomatol, 2016, 43(3): 348-351.
[10] Shi Jing, Yan Zhengbin, Hou Jingqiu, Peng Hui. Influence of bracketless invisible aligner technique and conventional technique on the number of Streptococcus mutans and Porphyromonas gingivalis [J]. Inter J Stomatol, 2016, 43(2): 151-154.
[11] Liu Yi1, Fei Wei1, Wang Lina2, Zhang Siyu3, Wang Yanjun1, Wu Hongkun4.. Effects of synthetic antimicrobial decapeptide on the growth and structure of Streptococcus mutans biofilm [J]. Inter J Stomatol, 2015, 42(4): 401-405.
[12] Song Ying, Zou Ling.. Structure, function, and control strategies of collagen and laminin-binding protein [J]. Inter J Stomatol, 2015, 42(4): 466-470.
[13] Ou Meizhen, Ling Junqi. Multiple effect of polyamines on biofilm [J]. Inter J Stomatol, 2015, 42(3): 361-363.
[14] Fang Li, Liu Yuan, Yang Ran, Zou Jing. Comparison of Streptococcus mutans in saliva before and after dental caries filling with resin-based composite [J]. Inter J Stomatol, 2015, 42(1): 28-30.
[15] Huang Ping, Wan Huchun, He Yonghong.. Differential proteomics of Streptococcus mutans under stress condition [J]. Inter J Stomatol, 2014, 41(1): 92-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Foreign Med Sci: Stomatol, 1999, 26(06): .
[2] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[3] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[4] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[5] . [J]. Foreign Med Sci: Stomatol, 1999, 26(05): .
[6] . [J]. Foreign Med Sci: Stomatol, 1999, 26(04): .
[7] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 458 -460 .
[8] . [J]. Foreign Med Sci: Stomatol, 2005, 32(06): 452 -454 .
[9] . [J]. Inter J Stomatol, 2008, 35(S1): .
[10] . [J]. Inter J Stomatol, 2008, 35(S1): .