Int J Stomatol ›› 2025, Vol. 52 ›› Issue (6): 748-754.doi: 10.7518/gjkq.2025086

• Orthodontics • Previous Articles     Next Articles

Factors influencing the efficiency of maxillary expansion in clear aligner orthodontic treatment

Ziwei Tang(),Yu Jin,Wenli Lai()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2024-05-17 Revised:2025-07-06 Online:2025-11-01 Published:2025-10-23
  • Contact: Wenli Lai E-mail:745749262@qq.com;wenlilai@scu.edu.cn

Abstract:

Objective To assess the factors influencing the efficiency of maxillary expansion during clear aligner treatment (CAT). Methods A total of 54 nonextraction CAT patients undergoing maxillary expansion were selected. Baseline data were collected, and crown lengths were measured via cone-beam computed tomography (CBCT). A model overlap was used to measure the maxillary expansion efficiency and torque changes. Linear analysis was performed to identify factors influencing expansion efficiency. Results Single-factor linear analysis revealed that maxillary first-molar expansion efficiency was significantly influenced by age, root length, crown-root ratio, attachment design, designed and actual expansion amount, actual torque changes, and designed-actual torque changes (P<0.05). Stepwise multivariate linear ana-lysis identified the crown-root ratio, attachment design, and designed and actual expansion amount as significantly affec-ting maxillary first-molar expansion efficiency (P<0.05). Conclusion During CAT expansion treatment, to the focus should be on the patient’s crown-root ratio. Bilateral attachment design and careful consideration of expansion amount limits in treatment planning are crucial to enhancing patient expansion efficiency.

Key words: maxillary expansion, clear aligner treatment, cone-beam computed tomography

CLC Number: 

  • R783.5

TrendMD: 

Fig 1

Measurement of crown and root lengths of maxillary first molars using Invivo"

Fig 2

Model alignment and measurements using Geomagic Wrap 2021"

Tab 1

Baseline data on clinical characteristics"

临床特征x±s)/n
年龄/岁27.02±6.88
性别
10
44
治疗时间/月24.97±9.79
安氏分类
Ⅰ类28
Ⅱ类19
Ⅲ类7
颌间牵引
无牵引19
Ⅱ类牵引27
Ⅲ类牵引8
IPR/mm0.52±1.03
附件16牙
无附件17
水平矩形附件19
垂直矩形附件3
优化附件15
附件26牙
无附件17
水平矩形附件24
垂直矩形附件4
优化附件9
附件16、26牙
无附件12
16或26牙有附件13
16、26牙均有附件29
16牙牙冠长度/mm5.99±0.37
16牙牙根长度/mm13.19±1.31
26牙牙冠长度/mm5.93±0.38
26牙牙根长度/mm13.01±1.38
16牙冠根比0.46±0.05
26牙冠根比0.46±0.06
16牙设计转矩/(°)a0.43±3.82
16牙实际-设计转矩/(°)b-1.04±2.36
26牙设计转矩/(°)a-0.56±3.11
26牙实际-设计转矩/(°)b-0.54±2.99

Tab 2

Comparison of designed and actual expansion for different tooth position"

牙位数量设计扩弓量/mm实际扩弓量/mm扩弓实现率/%P
13—23牙422.48±1.651.84±1.3772.48±15.65P<0.001
14—24牙493.08±1.262.50±1.2479.29±16.54P<0.001
15—25牙523.19±1.652.64±1.4282.65±14.74P<0.001
16—26牙542.67±1.512.09±1.3675.65±15.12P<0.001
17—27牙361.61±1.061.13±0.8370.18±18.92P<0.001

Fig 3

Comparison of the amount of arch expansion and efficiency of arch expansion at different tooth positions"

Tab 3

One-way linear analysis of the efficiency of arch expansion of maxillary first molars"

测量项目扩弓实现率/%Pβ95%置信区间
年龄/岁0.013-0.74-1.30~-0.18
治疗时间/月0.8890.03-0.39~0.45
上颌IPR/mm0.382-1.79-5.76~2.18
16牙牙冠长度/mm0.3075.77-5.20~16.74
16牙牙根长度/mm<0.001-7.18-9.63~-4.74
26牙牙冠长度/mm0.2186.79-3.89~17.47
26牙牙根长度/mm<0.001-6.86-9.18~-4.54
16牙冠根比<0.001194.80130.65~258.95
26牙冠根比<0.001158.19101.27~215.11
16—26牙设计扩弓量/mm0.0253.060.47~5.65
16牙设计转矩/(°)0.2970.57-0.49~1.64
16牙实际-设计转矩/(°)<0.0014.272.98~5.57
26牙设计转矩/(°)0.2050.85-0.45~2.15
26牙实际-设计转矩/(°)<0.0013.622.66~4.58
性别
69.12±14.95参照
77.14±14.930.1318.02-2.23~18.27
安氏分类
Ⅰ类76.06±15.62参照
Ⅱ类74.38±16.130.715-1.68-10.64~7.28
Ⅲ类77.45±15.120.8321.39-11.35~14.12
牵引
无牵引75.85±15.35参照
Ⅱ类牵引75.27±16.580.900-0.58-9.63~8.46
Ⅲ类牵引76.47±10.100.9250.61-12.11~13.34
附件16牙
无附件62.95±13.35参照
水平矩形附件82.75±22.79<0.00119.8011.57~28.02
垂直矩形附件86.58±5.360.00423.638.20~39.06
优化附件78.87±13.34<0.00115.927.19~24.65
附件26牙
无附件64.62±14.18参照
水平矩形附件85.55±9.19<0.00120.9313.74~28.13
垂直矩形附件83.59±11.950.00518.986.37~31.58
优化附件66.57±11.800.6841.95-7.40~11.30
附件16、26牙
无附件62.95±13.88参照
单侧附件68.73±13.590.2405.78-3.75~15.32
双侧附件84.01±15.12<0.00121.0612.88~29.24

Tab 4

Stepwise multifactorial linear analysis of arch expansion efficiency of maxillary first molars"

测量项目Pβ95%置信区间
16牙冠根比0.04758.152.26~114.05
26牙冠根比0.02456.899.32~104.46
16牙实际-设计转矩/(°)0.0291.32-19.30~-8.69
26牙实际-设计转矩/(°)0.0431.1211.51~24.43
附件26牙
无附件参照
水平矩形附件0.2363.89-2.45~10.24
垂直矩形附件0.2265.58-3.33~14.48
优化附件0.099-5.86-12.68~0.95
附件16、26牙
无附件参照
单侧附件0.6721.55-5.58~8.68
双侧附件0.0706.61-0.35~13.58
[1] Ali SAAH, Miethke HR. Invisalign, an innovative invisible orthodontic appliance to correct malocclusions: advantages and limitations[J]. Dent Update, 2012, 39(4): 254-256, 258-260.
[2] Vlaskalic V, Boyd R. Orthodontic treatment of a mildly crowded malocclusion using the Invisalign System[J]. Aust Orthod J, 2001, 17(1): 41-46.
[3] Barreda GJ, Dzierewianko EA, Mazza V, et al. Expansion treatment using Invisalign®: periodontal health status and maxillary buccal bone changes. A clinical and tomographic evaluation[J]. Acta Odontol Latinoam, 2020, 33(2): 69-81.
[4] Zhou N, Guo J. Efficiency of upper arch expansion with the Invisalign system[J]. Angle Orthod, 2020, 90(1): 23-30.
[5] 高琳, 李巍然, 林久祥. 模型重叠评价上颌切牙牙轴变化的可靠性研究[J]. 口腔医学, 2010, 30(9): 529-531.
Gao L, Li WR, Lin JX. Reliability of change of incisor inclination based on model superimposition[J]. Stomatology, 2010, 30(9): 529-531.
[6] Gatsonis C, Sampson AR. Multiple correlation: exact power and sample size calculations[J]. Psychol Bull, 1989, 106(3): 516-524.
[7] Benton D, Krishnamoorthy K. Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient[J]. Comput Stat Data Anal, 2003, 43(2): 249-267.
[8] Krishnamoorthy K, Xia YP. Sample size calculation for estimating or testing a nonzero squared multiple correlation coefficient[J]. Multivariate Behav Res, 2008, 43(3): 382-410.
[9] Vanarsdall RL, White RP Jr. Three-dimensional analysis for skeletal problems[J]. Int J Adult Or-thodon Orthognath Surg, 1994, 9(3): 159.
[10] Vanarsdall RL. Transverse dimension and long-term stability[J]. Semin Orthod, 1999, 5(3): 171-180.
[11] Womack WR, Ahn JH, Ammari Z, et al. A new approach to correction of crowding[J]. Am J Orthod Dentofacial Orthop, 2002, 122(3): 310-316.
[12] D’Antò V, Valletta R, Di Mauro L, et al. The predic-tability of transverse changes in patients treated with clear aligners[J]. Materials (Basel), 2023, 16(5): 1910.
[13] Betts NJ, Vanarsdall RL, Barber HD, et al. Diagnosis and treatment of transverse maxillary deficiency[J]. Int J Adult Orthodon Orthognath Surg, 1995, 10(2): 75-96.
[14] Felton JM, Sinclair PM, Jones DL, et al. A compu-terized analysis of the shape and stability of mandi-bular arch form[J]. Am J Orthod Dentofacial Orthop, 1987, 92(6): 478-483.
[15] Houle JP, Piedade L, Todescan R Jr, et al. The predictability of transverse changes with invisalign[J]. Angle Orthod, 2017, 87(1): 19-24.
[16] Sayin MO, Turkkahraman H. Comparison of dental arch and alveolar widths of patients with Class Ⅱ, division 1 malocclusion and subjects with Class Ⅰ ideal occlusion[J]. Angle Orthod, 2004, 74(3): 356-360.
[17] Anand M, Turpin DL, Jumani KS, et al. Retrospective investigation of the effects and efficiency of self-ligating and conventional brackets[J]. Am J Orthod Dentofacial Orthop, 2015, 148(1): 67-75.
[18] Galan-Lopez L, Barcia-Gonzalez J, Plasencia E. A systematic review of the accuracy and efficiency of dental movements with Invisalign® [J]. Korean J Orthod, 2019, 49(3): 140-149.
[19] Riede U, Wai S, Neururer S, et al. Maxillary expansion or contraction and occlusal contact adjustment: effectiveness of current aligner treatment[J]. Clin Oral Investig, 2021, 25(7): 4671-4679.
[20] Lione R, Paoloni V, Bartolommei L, et al. Maxillary arch development with invisalign system[J]. Angle Orthod, 2021, 91(4): 433-440.
[1] Wu Wenzhi,Feng Da-xing,Chen Chuizhuang,Zhou Lijuan.. Incidence and related factors of middle mesial canals in mandibular first molars in Haikou [J]. Int J Stomatol, 2022, 49(4): 420-425.
[2] Tian Haonan,Lin Min,Xie Congman,Ren Aishu. Association between ponticulus posticus and maxillary palatally impacted canine: a cone-beam computed tomography study [J]. Int J Stomatol, 2021, 48(5): 536-540.
[3] Zhang Shizhen,Lai Wenli. Research progress on maxillary protraction methods and auxiliary maxillary expansion for skeletal Class Ⅲ malocclusion [J]. Int J Stomatol, 2021, 48(3): 354-361.
[4] Ding Zhangfan,Guo Zhiyong,Miao Cheng,Li Chunjie,Xuan Ming,Wang Xiaoyi,Zhang Zhuang. Application of the cone-beam computed tomography-based three-dimensional visualization technology in the surgery of the jaw cystic lesion [J]. Int J Stomatol, 2021, 48(2): 180-186.
[5] Zhu Hualing,Yan Yujia,Zou Ling. Research progress on the root canal morphology of maxillary permanent molars by using cone-beam computed tomography [J]. Int J Stomatol, 2020, 47(6): 699-705.
[6] Zhang Kaiwen,Zhao Xuefeng,Shu Rui,Han Xianglong. Research progress on maxillary skeletal expander [J]. Int J Stomatol, 2020, 47(4): 484-490.
[7] Lai Wenli. Molar distalisation by using clear aligner treatment [J]. Int J Stomatol, 2019, 46(4): 373-382.
[8] Yingyou He,Sen Hu,Jihua Li. Clinical research progress on surgically assisted rapid maxillary expansion [J]. Int J Stomatol, 2019, 46(3): 343-348.
[9] Zhu Chenyou, Deng Jia, Gan Zhoujie, Liu Liu, Wang Tianlu, Cao Cong, Qu Yili. The application of cone-beam computed tomography in implant surgery of maxillary anterior teeth area [J]. Inter J Stomatol, 2018, 45(1): 59-63.
[10] Huang Zhenxian1, Wang Qiaojing2. Progress of rapid maxillary expansion for managing pediatric obstructive apnea sleep syndrome [J]. Inter J Stomatol, 2017, 44(2): 218-221.
[11] Luo Zhiqiang, Ye Zhongtai. A study of maxillary sinus lateral wall thickness of different population in Xinjiang region using cone-beam CT [J]. Inter J Stomatol, 2017, 44(1): 55-58.
[12] Ren Hongyu, Chen Xin. Comparison of cone-beam computed tomography with different voxel resolutions and panoramic imaging for detecting simulated apical root resorption [J]. Inter J Stomatol, 2014, 41(5): 514-517.
[13] Luo Houzhuo, Jia Lihui, Li Chengri, Zhang Wenjun, Zhang Xiaodong.. Comparison of general angle magnitudes measured using two kinds of cephalometric measuring software [J]. Inter J Stomatol, 2013, 40(5): 592-594.
[14] Zheng Wei1, Wang Shi2. Clinical application of rapid maxillary expansion implement made by press film [J]. Inter J Stomatol, 2013, 40(3): 315-316.
[15] Li Jianhua, Feng Xiaoxia, Yang Pu. Research progress on the bone-anchored maxillary protraction [J]. Inter J Stomatol, 2013, 40(3): 416-418.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!