Int J Stomatol ›› 2025, Vol. 52 ›› Issue (5): 606-613.doi: 10.7518/gjkq.2025077
• Cariology and Endodontics • Previous Articles Next Articles
Axuan Chen(),Wenyu Dai,Xianglong Han(
)
CLC Number:
[1] | Farooq I, Bugshan A. The role of salivary contents and modern technologies in the remineralization of dental enamel: a narrative review[J]. F1000Res, 2020, 9: 171. |
[2] | Bai Y, Bonde J, Carneiro KM, et al. A brief history of the discovery of amelogenin nanoribbons in vitro and in vivo [J]. J Dent Res, 2021, 100(13): 1429-1433. |
[3] | Quigley RM, Kearney M, Kennedy OD, et al. Tissue engineering approaches for dental pulp regeneration: the development of novel bioactive materials using pharmacological epigenetic inhibitors[J]. Bioact Mater, 2024, 40: 182-211. |
[4] | Abdolahinia ED, Taher SI, Dehdezi PA, et al. Strategies and challenges in the treatment of dental enamel[J]. Cells Tissues Organs, 2023, 212(6): 485-498. |
[5] | Bian C, Guo YM, Zhu MY, et al. New generation of orthodontic devices and materials with bioactive capacities to improve enamel demineralization[J]. J Dent, 2024, 142: 104844. |
[6] | Ali S, Farooq I, Al-Thobity AM, et al. An in-vitro evaluation of fluoride content and enamel reminera-lization potential of two toothpastes containing different bioactive glasses[J]. Biomed Mater Eng, 2020, 30(5/6): 487-496. |
[7] | Ramadoss R, Padmanaban R, Subramanian B. Role of bioglass in enamel remineralization: existing strategies and future prospects-a narrative review[J]. J Biomed Mater Res B Appl Biomater, 2022, 110(1): 45-66. |
[8] | Inchingolo AD, Inchingolo AM, Malcangi G, et al. Effects of resveratrol, curcumin and quercetin supplementation on bone metabolism-a systematic review[J]. Nutrients, 2022, 14(17): 3519. |
[9] | Lazar L, Vlasa A, Beresescu L, et al. White spot lesions (WSLs)-post-orthodontic occurrence, management and treatment alternatives: a narrative review[J]. J Clin Med, 2023, 12(5): 1908. |
[10] | Cabalén MB, Molina GF, Bono A, et al. Nonresto-rative caries treatment: a systematic review update[J]. Int Dent J, 2022, 72(6): 746-764. |
[11] | Wang LH, Niu SQ, Xu SS, et al. CHN nanocompo-sites and nanocoating resist enamel white spot lesions by enhancing remineralization and antibacte-rial activity[J]. RSC Adv, 2024, 14(21): 15008-15020. |
[12] | Veneri F, Vinceti SR, Filippini T. Fluoride and ca-ries prevention: a scoping review of public health policies[J]. Ann Ig, 2024, 36(3): 270-280. |
[13] | Gupta A, Sharda S, Nishant, et al. Topical fluoride-antibacterial agent combined therapy versus topical fluoride monotherapy in preventing dental caries: a systematic review and meta-analysis[J]. Eur Arch Paediatr Dent, 2020, 21(6): 629-646. |
[14] | Shaalan O, El-Rashidy A. Antibacterial effect of miswak herbal toothpaste compared to fluoride toothpaste in high caries risk patients: randomized clinical trial[J]. J Clin Exp Dent, 2023, 15(7): e526-e534. |
[15] | Abdalla MM, Bijle MN, Abdallah NMA, et al. Enamel remineralization potential and antimicrobial effect of a fluoride varnish containing calcium strontium silicate[J]. J Dent, 2023, 138: 104731. |
[16] | Veneri F, Vinceti M, Generali L, et al. Fluoride exposure and cognitive neurodevelopment: systematic review and dose-response meta-analysis[J]. Environ Res, 2023, 221: 115239. |
[17] | Zhang KQ, Lu ZF, Guo XY. Advances in epidemiological status and pathogenesis of dental fluorosis[J]. Front Cell Dev Biol, 2023, 11: 1168215. |
[18] | Chan AKY, Tamrakar M, Jiang CM, et al. Clinical evidence for professionally applied fluoride therapy to prevent and arrest dental caries in older adults: a systematic review[J]. J Dent, 2022, 125: 104273. |
[19] | Piszko PJ, Piszko A, Kiryk J, et al. The influence of fluoride gels on the physicochemical properties of tooth tissues and dental materials-a systematic review[J]. Gels, 2024, 10(2): 98. |
[20] | Lopes AG, Magalhães TC, Denadai ÂML, et al. Preparation and characterization of NaF/Chitosan supramolecular complex and their effects on prevention of enamel demineralization[J]. J Mech Behav Biomed Mater, 2023, 147: 106134. |
[21] | Zhou J, Zhou L, Chen ZY, et al. Remineralization and bacterial inhibition of early enamel caries surfaces by carboxymethyl chitosan lysozyme nanogels loaded with antibacterial drugs[J]. J Dent, 2025, 152: 105489. |
[22] | Kale YJ, Misal S, Dadpe MV, et al. Comparison of cariostatic and remineralizing potential of two commercial silver diamine fluoride preparations using confocal laser microscopy and EDX-SEM spectroscopy: an in vitro study[J]. Int J Clin Pediatr Dent, 2022, 15(6): 643-651. |
[23] | Phonghanyudh A, Duangthip D, Mabangkhru S, et al. Is silver diamine fluoride effective in arresting enamel caries? A randomized clinical trial[J]. Int J Environ Res Public Health, 2022, 19(15): 8992. |
[24] | Zheng FM, Yan IG, Duangthip D, et al. Silver dia-mine fluoride therapy for dental care[J]. Jpn Dent Sci Rev, 2022, 58: 249-257. |
[25] | Zhu YL, Zhang XR, Chang GZ, et al. Bioactive glass in tissue regeneration: unveiling recent advan-ces in regenerative strategies and applications[J]. Adv Mater, 2025, 37(2): e2312964. |
[26] | Gupta S, Majumdar S, Krishnamurthy S. Bioactive glass: a multifunctional delivery system[J]. J Control Release, 2021, 335: 481-497. |
[27] | Nagasaki R, Nagano K, Nezu T, et al. Synthesis and characterization of bioactive glass and zinc oxide nanoparticles with enamel remineralization and antimicrobial capabilities[J]. Materials (Basel), 2023, 16(21): 6878. |
[28] | Ergucu Z, Yoruk I, Erdoğan A, et al. The use of toothpastes containing different formulations of fluo-ride and bioglass on bleached enamel[J]. Materials (Basel), 2023, 16(4): 1368. |
[29] | Tiskaya M, Shahid S, Gillam D, et al. The use of bioactive glass (BAG) in dental composites: a critical review[J]. Dent Mater, 2021, 37(2): 296-310. |
[30] | Yang SY, Han AR, Choi JW, et al. Novel antibacte-rial and apatite forming restorative composite resin incorporated with hydrated calcium silicate[J]. Biomater Res, 2023, 27(1): 25. |
[31] | Sergi R, Bellucci D, Salvatori R, et al. A novel bioactive glass containing therapeutic ions with enhanced biocompatibility[J]. Materials (Basel), 2020, 13(20): 4600. |
[32] | Simila HO, Boccaccini AR. Sol-gel bioactive glass containing biomaterials for restorative dentistry: a review[J]. Dent Mater, 2022, 38(5): 725-747. |
[33] | Kou SG, Peters LM, Mucalo MR. Chitosan: a review of sources and preparation methods[J]. Int J Biol Macromol, 2021, 169: 85-94. |
[34] | Pourhajibagher M, Keshavarz Valian N, Bahador A. Theranostic nanoplatforms of emodin-chitosan with blue laser light on enhancing the anti-biofilm activity of photodynamic therapy against Streptococcus mutans biofilms on the enamel surface[J]. BMC Microbiol, 2022, 22(1): 68. |
[35] | Nimbeni SB, Nimbeni BS, Divakar DD. Role of chitosan in remineralization of enamel and dentin: a systematic review[J]. Int J Clin Pediatr Dent, 2021, 14(4): 562-568. |
[36] | Pini NIP, Piccelli MR, Vieira-Junior WF, et al. In-office tooth bleaching with chitosan-enriched hydrogen peroxide gels: in vitro results[J]. Clin Oral Investig, 2022, 26(1): 471-479. |
[37] | Rout SR, Kar B, Pradhan D, et al. Chitosan as a potential biomaterial for the management of oral mucositis, a common complication of cancer treatment[J]. Pharm Dev Technol, 2023, 28(1): 78-94. |
[38] | Fernandes GLP, Vanim MM, Delbem ACB, et al. Antibacterial, cytotoxic and mechanical properties of a orthodontic cement with phosphate nano-sized and phosphorylated chitosan: an in vitro study[J]. J Dent, 2024, 146: 105073. |
[39] | Yan JR, Yang HY, Luo T, et al. Application of amorphous calcium phosphate agents in the prevention and treatment of enamel demineralization[J]. Front Bioeng Biotechnol, 2022, 10: 853436. |
[40] | Li YR, Li YW, Bai QH, et al. Recombinant amelogenin peptide TRAP promoting remineralization of early enamel caries: an in vitro study[J]. Front Physiol, 2023, 14: 1076265. |
[41] | Dissanayake SSM, Ekambaram M, Li KC, et al. Identification of key functional motifs of native a-melogenin protein for dental enamel remineralisation[J]. Molecules, 2020, 25(18): 4214. |
[42] | Moradian-Oldak J, George A. Biomineralization of enamel and dentin mediated by matrix proteins[J]. J Dent Res, 2021, 100(10): 1020-1029. |
[43] | Dawasaz AA, Togoo RA, Mahmood Z, et al. Effectiveness of self-assembling peptide (P11-4) in dental hard tissue conditions: a comprehensive review[J]. Polymers (Basel), 2022, 14(4): 792. |
[44] | Alkilzy M, Qadri G, Splieth CH, et al. Biomimetic enamel regeneration using self-assembling peptide P11-4[J]. Biomimetics (Basel), 2023, 8(3): 290. |
[45] | Shaalan O, Fawzy El-Sayed K, Abouauf E. Evaluation of the remineralization potential of self-assembling peptide P11-4 with fluoride compared to fluoride varnish in the management of incipient carious lesions: a randomized controlled clinical trial[J]. Clin Oral Investig, 2024, 28(8): 438. |
[46] | Luiz MT, di Filippo LD, Dutra JAP, et al. New technological approaches for dental caries treatment: from liquid crystalline systems to nanocarriers[J]. Pharmaceutics, 2023, 15(3): 762. |
[47] | Fratila DN, Virvescu DI, Luchian I, et al. Advances and functional integration of hydrogel composites as drug delivery systems in contemporary dentistry[J]. Gels, 2024, 10(10): 661. |
[48] | Dawasaz AA, Togoo RA, Mahmood Z, et al. Re-mineralization of dentinal lesions using biomimetic agents: a systematic review and meta-analysis[J]. Biomimetics (Basel), 2023, 8(2): 159. |
[49] | Fosca M, Rau JV, Uskoković V. Factors influencing the drug release from calcium phosphate cements[J]. Bioact Mater, 2021, 7: 341-363. |
[50] | Fan ML, Li M, Yang YM, et al. Dual-functional adhesive containing amorphous calcium phosphate nanoparticles and dimethylaminohexadecyl metha-crylate promoted enamel remineralization in a biofilm-challenged environment[J]. Dent Mater, 2022, 38(9): 1518-1531. |
[51] | Adelnia H, Tran HDN, Little PJ, et al. Poly(aspartic acid) in biomedical applications: from polymerization, modification, properties, degradation, and biocompatibility to applications[J]. ACS Biomater Sci Eng, 2021, 7(6): 2083-2105. |
[52] | Yacout YM, Nabawy YA, El-Harouni NM, et al. Shear bond strength of metallic brackets bonded to enamel pretreated with CPP-ACP: a systematic review and meta-analysis of in vitro studies[J]. BMC Oral Health, 2023, 23(1): 440. |
[53] | de Oliveira PRA, Barreto LSDC, Tostes MA. Effectiveness of CPP-ACP and fluoride products in tooth remineralization[J]. Int J Dent Hyg, 2022, 20(4): 635-642. |
[54] | Zhi C, Chen X, Yu KN, et al. A bifunctional nano complex with remineralizing and antibacterial acti-vities to interrupt dental caries[J]. J Control Release, 2024, 376: 717-731. |
[55] | Elbasuney S, El-Khawaga AM, Elsayed MA, et al. Enhanced photocatalytic and antibacterial activities of novel Ag-HA bioceramic nanocatalyst for waste-water treatment[J]. Sci Rep, 2023, 13(1): 13819. |
[56] | Wang RX, Jia CH, Zheng NN, et al. Effects of photodynamic therapy on Streptococcus mutans and enamel remineralization of multifunctional TiO2-HAP composite nanomaterials[J]. Photodiagnosis Photodyn Ther, 2023, 42: 103141. |
[57] | Xue VW, Zhao IS, Yin IX, et al. Effects of 9, 300 nm carbon dioxide laser on dental hard tissue: a concise review[J]. Clin Cosmet Investig Dent, 2021, 13: 155-161. |
[58] | Rana A, Samtiya M, Dhewa T, et al. Health benefits of polyphenols: a concise review[J]. J Food Biochem, 2022, 46(10): e14264. |
[59] | Zhang WN, Liu YN, Zhang X, et al. Tea polyphenols-loaded nanocarriers: preparation technology and biological function[J]. Biotechnol Lett, 2022, 44(3): 387-398. |
|