Int J Stomatol ›› 2024, Vol. 51 ›› Issue (2): 217-226.doi: 10.7518/gjkq.2024014

• Reviews • Previous Articles     Next Articles

Current status of animal model on trigeminal neuralgia

Ketai He(),Mingjie Xu,Changhan Zhou,Jinlong Mi,Yibo Li,Lei Liu()   

  1. State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Dept. of Trauma and Reconstruction Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
  • Received:2023-04-05 Revised:2023-10-29 Online:2024-03-01 Published:2024-03-11
  • Contact: Lei Liu E-mail:1441226538@qq.com;drliulei@163.com
  • Supported by:
    Applied Basic Research Programs of Science and Technology Department of Sichuan Province(2020YJ0278)

Abstract:

Trigeminal neuralgia is a common clinical disease in stomatology. It is characterized by severe pain like electric shock, thereby seriously affecting the life and work of patients. Trigeminal neuralgia can be divided into three types with different causes and characteristics. Among them, classical trigeminal neuralgia has the main pathogenesis of mechanical compression, and inflammatory factors also significantly affect this process. Establishing an appropriate animal model of trigeminal neuralgia plays an important role in understanding the etiology and pathogenesis of the disease. Such a model can also serve as the experimental methodological basis for studying the treatment of trigeminal neuralgia. Scho-lars have established various trigeminal neuralgia animal models for different experimental purposes and scenarios. This article reviews the research status of animal experimental models of trigeminal neuralgia.

Key words: trigeminal neuralgia, animal model, pathogenesis

CLC Number: 

  • R783.4

TrendMD: 
1 Headache classification committee of the international headache society (IHS) the international classification of headache disorders, 3rd edition[J]. Ce-phalalgia, 2018, 38(1): 1-211.
2 Cruccu G, Di Stefano G, Truini A. Trigeminal neuralgia[J]. N Engl J Med, 2020, 383(8): 754-762.
3 Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and molecular mechanisms of pain[J]. Cell, 2009, 139(2): 267-284.
4 Chen QL, Yi DI, Perez JNJ, et al. The molecular basis and pathophysiology of trigeminal neuralgia[J]. Int J Mol Sci, 2022, 23(7): 3604.
5 Xu RS, Xie ME, Jackson CM. Trigeminal neuralgia: current approaches and emerging interventions[J]. J Pain Res, 2021, 14: 3437-3463.
6 Maarbjerg S, Benoliel R. The changing face of trigeminal neuralgia-a narrative review[J]. Headache, 2021, 61(6): 817-837.
7 Park HT, Kim YH, Lee KE, et al. Behind the patho-logy of macrophage-associated demyelination in inflammatory neuropathies: demyelinating Schwann cells[J]. Cell Mol Life Sci, 2020, 77(13): 2497-2506.
8 Zhao QQ, Qian XY, An JX, et al. Rat model of trigeminal neuralgia using cobra venom mimics the electron microscopy, behavioral, and anticonvulsant drug responses seen in patients[J]. Pain Physician, 2015, 18(6): E1083-E1090.
9 Devor M, Amir R, Rappaport ZH. Pathophysiology of trigeminal neuralgia: the ignition hypothesis[J]. Clin J Pain, 2002, 18(1): 4-13.
10 Araya EI, Claudino RF, Piovesan EJ, et al. Trigeminal neuralgia: basic and clinical aspects[J]. Curr Neuropharmacol, 2020, 18(2): 109-119.
11 Yoon JH, Son JY, Kim MJ, et al. Preemptive application of QX-314 attenuates trigeminal neuropathic mechanical allodynia in rats[J]. Korean J Physiol Pharmacol, 2018, 22(3): 331-341.
12 Lampert A, Hains BC, Waxman SG. Upregulation of persistent and ramp sodium current in dorsal horn neurons after spinal cord injury[J]. Exp Brain Res, 2006, 174(4): 660-666.
13 Ahn HS, Dib-Hajj SD, Cox JJ, et al. A new Nav1.7 sodium channel mutation I234T in a child with severe pain[J]. Eur J Pain, 2010, 14(9): 944-950.
14 Siqueira SR, Alves B, Malpartida HM, et al. Abnormal expression of voltage-gated sodium channels Nav1.7, Nav1.3 and Nav1.8 in trigeminal neuralgia[J]. Neuroscience, 2009, 164(2): 573-577.
15 Ling J, Erol F, Gu JG. Role of KCNQ2 channels in orofacial cold sensitivity: KCNQ2 upregulation in trigeminal ganglion neurons after infraorbital nerve chronic constrictive injury[J]. Neurosci Lett, 2018, 664: 84-90.
16 Tatulian L, Delmas P, Abogadie FC, et al. Activation of expressed KCNQ potassium currents and native neuronal M-type potassium currents by the anti-convulsant drug retigabine[J]. J Neurosci, 2001, 21(15): 5535-5545.
17 Liu MX, Zhong J, Xia L, et al. The expression of voltage-gated sodium channels in trigeminal nerve following chronic constriction injury in rats[J]. Int J Neurosci, 2019, 129(10): 955-962.
18 Bendtsen L, Zakrzewska JM, Heinskou TB, et al. Advances in diagnosis, classification, pathophysio-logy, and management of trigeminal neuralgia[J]. Lancet Neurol, 2020, 19(9): 784-796.
19 Xu M, Aita M, Chavkin C. Partial infraorbital nerve ligation as a model of trigeminal nerve injury in the mouse: behavioral, neural, and glial reactions[J]. J Pain, 2008, 9(11): 1036-1048.
20 Khan J, Noboru N, Imamura Y, et al. Effect of Pregabalin and Diclofenac on tactile allodynia, mecha-nical hyperalgesia and pro inflammatory cytokine levels (IL-6, IL-1β) induced by chronic constriction injury of the infraorbital nerve in rats[J]. Cytokine, 2018, 104: 124-129.
21 Nagakura Y, Nagaoka S, Kurose T. Potential mole-cular targets for treating neuropathic orofacial pain based on current findings in animal models[J]. Int J Mol Sci, 2021, 22(12): 6406.
22 李秋月, 许海玉, 杨洪军. 促炎因子TNF-α, IL-1β, IL-6在神经病理性疼痛中的研究进展[J]. 中国中药杂志, 2017, 42(19): 3709-3712.
Li QY, Xu HY, Yang HJ. Effect of proinflammatory factors TNF-α, IL-1β, IL-6 on neuropathic pain[J]. China J Chin Mater Med, 2017, 42(19): 3709-3712.
23 Demartini C, Greco R, Zanaboni AM, et al. Antagonism of transient receptor potential ankyrin type-1 channels as a potential target for the treatment of trigeminal neuropathic pain: study in an animal model[J]. Int J Mol Sci, 2018, 19(11): 3320.
24 Koizumi M, Asano S, Furukawa A, et al. P2X3 receptor upregulation in trigeminal ganglion neurons through TNFα production in macrophages contri-butes to trigeminal neuropathic pain in rats[J]. J Headache Pain, 2021, 22(1): 31.
25 Xiong W, Tan MX, He LK, et al. Inhibitory effects of tetramethylpyrazine on pain transmission of trigeminal neuralgia in CCI-ION rats[J]. Brain Res Bull, 2017, 134: 72-78.
26 Jung J, Jo HW, Kwon H, et al. ATP release through lysosomal exocytosis from peripheral nerves: the effect of lysosomal exocytosis on peripheral nerve degeneration and regeneration after nerve injury[J]. Biomed Res Int, 2014, 2014: 936891.
27 Liao JY, Zhou TH, Chen BK, et al. Schwann cells and trigeminal neuralgia[J]. Mol Pain, 2020, 16: 1744806920963809.
28 Martínez-García MÁ, Migueláñez-Medrán BC, Goi-coechea C. Animal models in the study and treatment of orofacial pain[J]. J Clin Exp Dent, 2019, 11(4): e382-e390.
29 Gupta S, Bansal RN, Singh Sodhi SP, et al. Animal models-mimicking the pain of trigeminal neuralgia[J]. Indian J Pharmacol, 2022, 54(2): 138-145.
30 Jeon HJ, Han SR, Park MK, et al. A novel trigeminal neuropathic pain model: compression of the trigeminal nerve root produces prolonged nociception in rats[J]. Prog Neuropsychopharmacol Biol Psy-chiatry, 2012, 38(2): 149-158.
31 Ahn DK, Lim EJ, Kim BC, et al. Compression of the trigeminal ganglion produces prolonged nociceptive behavior in rats[J]. Eur J Pain, 2009, 13(6): 568-575.
32 Burchiel KJ. Abnormal impulse generation in focally demyelinated trigeminal roots[J]. J Neurosurg, 1980, 53(5): 674-683.
33 Tao R, Huang F, Lin K, et al. Using RNA-seq to explore the hub genes in the trigeminal root entry zone of rats by compression injury[J]. Pain Physician, 2021, 24(5): E573-E581.
34 Luo DS, Lin R, Luo LL, et al. Glial plasticity in the trigeminal root entry zone of a rat trigeminal neuralgia animal model[J]. Neurochem Res, 2019, 44(8): 1893-1902.
35 林仁, 李秋华, 邱荣晖, 等. 大鼠三叉神经根区慢性压迫损伤对neuroligin-2表达的影响[J]. 神经解剖学杂志, 2020, 36(5): 477-483.
Lin R, Li QH, Qiu RH, et al. Effects of trigeminal root chronic compression injury on the expression of neuroligin-2 in the trigeminal root entry zone in the rat[J]. Chin J Neuroanat, 2020, 36(5): 477-483.
36 Fried K, Hansson PT. Animal models of trigeminal neuralgia: a commentary[J]. Mol Pain, 2020, 16: 1744806920980538.
37 Obermann M. Recent advances in understanding/managing trigeminal neuralgia[J]. F1000Res, 2019, 8: F1000 Faculty Rev-F1000 Faculty 505.
38 Han SR, Yeo SP, Lee MK, et al. Early dexamethasone relieves trigeminal neuropathic pain[J]. J Dent Res, 2010, 89(9): 915-920.
39 Lee GW, Son JY, Lee AR, et al. Central VEGF-A pathway plays a key role in the development of trigeminal neuropathic pain in rats[J]. Mol Pain, 2019, 15: 1744806919872602.
40 Son JY, Ju JS, Kim YM, et al. TNF‑α‑mediated RIPK1 pathway participates in the development of trigeminal neuropathic pain in rats[J]. Int J Mol Sci, 2022, 23(1): 506.
41 Sun X, Cao L, Ge JL, et al. The NLRP3-related inflammasome modulates pain behavior in a rat model of trigeminal neuropathic pain[J]. Life Sci, 2021, 277: 119489.
42 Yang KY, Kim MJ, Ju JS, et al. Antinociceptive effects of botulinum toxin type A on trigeminal neuropathic pain[J]. J Dent Res, 2016, 95(10): 1183-1190.
43 Li LN, Yao LL, Wang FJ, et al. Knock-down of JAK2 and PTEN on pain behavior in rat model of trigeminal neuropathic pain[J]. Gene, 2019, 719: 144080.
44 Vos BP, Strassman AM, Maciewicz RJ. Behavioral evidence of trigeminal neuropathic pain following chronic constriction injury to the rat's infraorbital nerve[J]. J Neurosci, 1994, 14(5 Pt 1): 2708-2723.
45 Magnussen C, Hung SP, Ribeiro-da-Silva A. Novel expression pattern of neuropeptide Y immunoreactivity in the peripheral nervous system in a rat mo-del of neuropathic pain[J]. Mol Pain, 2015, 11: 31.
46 Montes Angeles CD, Andrade Gonzalez RD, Hernandez EP, et al. Sensory, affective, and cognitive effects of trigeminal injury in mice[J]. J Oral Maxillofac Surg, 2020, 78(12): 2169-2181.
47 Korczeniewska OA, Khan J, Tao YX, et al. Effects of sex and stress on trigeminal neuropathic pain-like behavior in rats[J]. J Oral Facial Pain Headache, 2017, 31(4): 381-397.
48 苏鸿年, 司马靓杰, 杨木强. 鼠神经生长因子对三叉神经痛大鼠三叉神经节氧化应激和炎性因子的影响[J]. 中国临床药理学杂志, 2020(17): 2664-2667.
Su HN, Sima LJ, Yang MQ. Effects of rat nerve growth factor on oxidative stress and inflammatory factors of trigeminal ganglia in rats with trigeminal neuralgia[J]. Chin J Clin Pharmacol, 2020(17): 2664-2667.
49 Cai J, Yan Y, Zhang DY, et al. Silencing of lncRNA Gm14461 alleviates pain in trigeminal neuralgia through inhibiting astrocyte activation[J]. IUBMB Life, 2020, 72(12): 2663-2671.
50 Wang XH, Wang H, Zhang T, et al. Inhibition of microRNA-195 alleviates neuropathic pain by targe-ting Patched1 and inhibiting SHH signaling pathway activation[J]. Neurochem Res, 2019, 44(7): 1690-1702.
51 Noma D, Fujita S, Zama M, et al. Application of oxytocin with low-level laser irradiation suppresses the facilitation of cortical excitability by partial ligation of the infraorbital nerve in rats: an optical ima-ging study[J]. Brain Res, 2020, 1728: 146588.
52 Urano H, Ara T, Fujinami Y, et al. Aberrant TRPV1 expression in heat hyperalgesia associated with trigeminal neuropathic pain[J]. Int J Med Sci, 2012, 9(8): 690-697.
53 Chen WJ, Niu JQ, Chen YT, et al. Unilateral facial injection of Botulinum neurotoxin A attenuates bila-teral trigeminal neuropathic pain and anxiety-like behaviors through inhibition of TLR2-mediated neuroinflammation in mice[J]. J Headache Pain, 2021, 22(1): 38.
54 Hardt S, Fischer C, Vogel A, et al. Distal infraorbital nerve injury: a model for persistent facial pain in mice[J]. Pain, 2019, 160(6): 1431-1447.
55 Melo LT, Panchalingam V, Cherkas P, et al. (-)-α- Bisabolol reduces nociception and trigeminal central sensitisation in acute orofacial neuropathic pain induced by infraorbital nerve injury[J]. Life Sci, 2019, 227: 122-128.
56 Deseure K, Hans G. Behavioral study of non-evoked orofacial pain following different types of infraorbital nerve injury in rats[J]. Physiol Behav, 2015, 138: 292-296.
57 An JX, He Y, Qian XY, et al. A new animal model of trigeminal neuralgia produced by administration of cobra venom to the infraorbital nerve in the rat[J]. Anesth Analg, 2011, 113(3): 652-656.
58 Chuinsiri N, Edwards D, Telezhkin V, et al. Explo-ring the roles of neuropeptides in trigeminal neuropathic pain: a systematic review and narrative synthesis of animal studies[J]. Arch Oral Biol, 2021, 130: 105247.
59 Xu WH, Zhang J, Wang YY, et al. Changes in the expression of voltage-gated sodium channels Nav1.3, Nav1.7, Nav1.8, and Nav1.9 in rat trigeminal ganglia following chronic constriction injury[J]. Neuroreport, 2016, 27(12): 929-934.
60 Zhu B, Xu WD, Rong PJ, et al. A C-fiber reflex inhibition induced by electroacupuncture with different intensities applied at homotopic and heterotopic acupoints in rats selectively destructive effects on mye-linated and unmyelinated afferent fibers[J]. Brain Res, 2004, 1011(2): 228-237.
61 Chen RW, Liu H, An JX, et al. Cognitive effects of electro-acupuncture and pregabalin in a trigeminal neuralgia rat model induced by cobra venom[J]. J Pain Res, 2017, 10: 1887-1897.
62 Zhang L, Ma ZJ, Wu Z, et al. Curcumin improves chronic pain induced depression through regulating serum metabolomics in a rat model of trigeminal neuralgia[J]. J Pain Res, 2020, 13: 3479-3492.
63 Zhang L, Ding XL, Wu Z, et al. Curcumin alleviates pain and improves cognitive impairment in a rat model of cobra venom-induced trigeminal neuralgia[J]. J Pain Res, 2018, 11: 1095-1104.
64 Yu W, Kauppila T, Hultenby K, et al. Photochemically-induced ischemic injury of the rat sciatic nerve: a light- and electron microscopic study[J]. J Peripher Nerv Syst, 2000, 5(4): 209-217.
65 崔悦, 赵佳, 王晔, 等. 一种光化学损伤诱导的三叉神经痛大鼠模型的建立[J]. 中国药理学通报, 2014, 30(7): 1026-1030.
Cui Y, Zhao J, Wang Y, et al. Establishment of a rat model of trigeminal neuralgia induced by photochemical nerve injury[J]. Chin Pharmacol Bull, 2014, 30(7): 1026-1030.
66 王晔, 王丹巧, 崔悦, 等. CQM对三叉神经痛模型大鼠的镇痛效应及其对脑内兴奋性氨基酸递质的影响[J]. 中国中药杂志, 2013, 38(20): 3554-3559.
Wang Y, Wang DQ, Cui Y, et al. Analgesic effect of CQM on prosopalgia model rats and its impact on exciting amino acid neurotransmitters[J]. China J Chin Mater Med, 2013, 38(20): 3554-3559.
67 Nemoto T, Yanagita T, Maruta T, et al. Endothelin-1-induced down-regulation of NaV1.7 expression in adrenal chromaffin cells: attenuation of catecho-lamine secretion and tau dephosphorylation[J]. FEBS Lett, 2013, 587(7): 898-905.
68 Tykocki NR, Watts SW. The interdependence of endothelin-1 and calcium: a review[J]. Clin Sci (Lond), 2010, 119(9): 361-372.
69 曹启旺, 徐慧巧. 经眶下神经注射ET-1复制三叉神经痛大鼠模型[J]. 中国现代医学杂志, 2019, 29(4): 14-17.
Cao QW, Xu HQ. Study of trigeminal neuralgia in an animal model produced by administration of endothelin-1 to the infraorbital nerve[J]. China J Mod Med, 2019, 29(4): 14-17.
70 Jelodar S, Zare Mirakabadi A, Oryan S, et al. Effect of honey bee venom on experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS)[J]. Arch Razi Inst, 2021, 76(6): 1727-1733.
71 Démosthènes A, Sion B, Giraudet F, et al. In-depth characterization of somatic and orofacial sensitive dysfunctions and interfering-symptoms in a relap-sing-remitting experimental autoimmune encephalomyelitis mouse model[J]. Front Neurol, 2021, 12: 789432.
72 Thorburn KC, Paylor JW, Webber CA, et al. Facial hypersensitivity and trigeminal pathology in mice with experimental autoimmune encephalomyelitis[J]. Pain, 2016, 157(3): 627-642.
73 Dalenogare DP, Ritter C, Bellinaso FRA, et al. Perio-rbital nociception in a progressive multiple sclerosis mouse model is dependent on TRPA1 channel activation[J]. Pharmaceuticals (Basel), 2021, 14(8): 831.
74 Duffy SS, Perera CJ, Makker PG, et al. Peripheral and central neuroinflammatory changes and pain behaviors in an animal model of multiple sclerosis[J]. Front Immunol, 2016, 7: 369.
75 韩杰, 刘亦青, 任妍妍, 等. 三叉神经痛大鼠脑内P物质及β-内啡肽的变化[J]. 山东大学学报(医学版), 2013(8): 45-48.
Han J, Liu YQ, Ren YY, et al. Changes of substance P and beta-endorphin in the brain of rats with trigeminal neuralgia[J]. J Shandong Univ Health Sci, 2013(8): 45-48.
76 邬英全, 邬巍, 侯奕楠, 等. 颅面痛的诊断治疗[J]. 中国实用内科杂志, 2010, 30(6): 583-584.
Wu YQ, Wu W, Hou YN, et al. Diagnosis and treatment of craniofacial pain[J]. Chin J Pract Intern Med, 2010, 30(6): 583-584.
77 王惠岚, 罗道枢, 陈江. 大鼠三叉神经痛模型的建立[J]. 福建医科大学学报, 2006, 40(5): 520-522.
Wang HL, Luo DS, Chen J. Rat model for trigeminal neuralgia[J]. J Fujian Med Univ, 2006, 40(5): 520-522.
78 Lee IO, Whitehead RA, Ries CR, et al. Evaluation of a novel mouse model of intracisternal strychnine-induced trigeminal allodynia[J]. Can J Anaesth, 2013, 60(8): 780-786.
79 Juárez I, Morales-Medina JC, Flores-Tochihuitl J, et al. Tooth pulp injury induces sex-dependent neuronal reshaping in the ventral posterolateral nucleus of the rat thalamus[J]. J Chem Neuroanat, 2019, 96: 16-21.
80 Islam J, Kc E, Oh BH, et al. Optogenetic stimulation of the motor cortex alleviates neuropathic pain in rats of infraorbital nerve injury with/without CGRP knock-down[J]. J Headache Pain, 2020, 21(1): 106.
81 Yeomans DC, Klukinov M. A rodent model of trigeminal neuralgia[J]. Methods Mol Biol, 2012, 851: 121-131.
82 Moon HC, Heo WI, Kim YJ, et al. Optical inactivation of the anterior cingulate cortex modulate descending pain pathway in a rat model of trigeminal neuropathic pain created via chronic constriction injury of the infraorbital nerve[J]. J Pain Res, 2017, 10: 2355-2364.
83 Fruhstorfer H, Gross W, Selbmann O. von Frey hairs: new materials for a new design[J]. Eur J Pain, 2001, 5(3): 341-342.
84 Wang L, Long MH, Wang MH, et al. Trigeminal neuralgia causes neurodegeneration in rats associa-ted with upregulation of the CD95/CD95L pathway[J]. Mol Pain, 2020, 16: 1744806920908092.
85 Yang YJ, Hu L, Xia YP, et al. Resveratrol suppres-ses glial activation and alleviates trigeminal neuralgia via activation of AMPK[J]. J Neuroinflammation, 2016, 13(1): 84.
86 Ahn DK, Lee SY, Han SR, et al. Intratrigeminal ganglionic injection of LPA causes neuropathic pain-like behavior and demyelination in rats[J]. Pain, 2009, 146(1/2): 114-120.
87 Vuralli D, Wattiez AS, Russo AF, et al. Behavioral and cognitive animal models in headache research[J]. J Headache Pain, 2019, 20(1): 11.
88 Obermann M, Yoon MS, Ese D, et al. Impaired trigeminal nociceptive processing in patients with trigeminal neuralgia[J]. Neurology, 2007, 69(9): 835-841.
89 Xia L, Liu MX, Zhong J, et al. Pain threshold monitoring during chronic constriction injury of the inf-raorbital nerve in rats[J]. Br J Neurosurg, 2019, 33(4): 409-412.
90 Yin CC, Shen WH, Zhang MM, et al. Inhibitory effects of palmatine on P2X7 receptor expression in trigeminal ganglion and facial pain in trigeminal neuralgia rats[J]. Front Cell Neurosci, 2021, 15: 672022.
91 王双义, 王永亮, 刘风芝, 等. 眶下孔周围注射滑石粉制作新型大鼠三叉神经痛动物模型的实验研究[J]. 上海口腔医学, 2018, 27(5): 472-476.
Wang SY, Wang YL, Liu FZ, et al. Experimental study of a new animal model with trigeminal neuralgia produced by administration of talc to peripheral infraobital nerve in rats[J]. Shanghai J Stomatol, 2018, 27(5): 472-476.
92 Islam J, Kc E, Kim S, et al. Stimulating GABAergic neurons in the nucleus accumbens core alters the trigeminal neuropathic pain responses in a rat model of infraorbital nerve injury[J]. Int J Mol Sci, 2021, 22(16): 8421.
[1] Xia Weiyao,Jia Zhonglin. Research progress on the relationship between vitamin and oral clefts [J]. Int J Stomatol, 2023, 50(6): 632-638.
[2] Wang Guanru,Feng Qiang.. Research progress on the role of Porphyromonas gingivalis on promoting the development of Alzheimer ’ s disease [J]. Int J Stomatol, 2022, 49(4): 397-403.
[3] Lei Bin,Chen Ke. Classification and treatment of dentin dysplasia type[J]. Int J Stomatol, 2022, 49(3): 332-336.
[4] Fu Zhuohui,Tan Xuelian,Huang Dingming. Diagnosis and treatment of odontogenic maxillary sinusitis [J]. Int J Stomatol, 2021, 48(3): 367-372.
[5] Zhou Yuxi,Yong Xiangzhi,Jiang Qiaozhi,Tao Renchuan. Oral chronic graft versus host disease [J]. Int J Stomatol, 2019, 46(5): 609-616.
[6] Zheng Zhi, Yan Shiguo. Relationship between herpes virus and periodontitis [J]. Inter J Stomatol, 2018, 45(2): 224-227.
[7] Zhang Feng, Ouyang Shaobo, Liao Lan. Research progress on the pathogenesis of non-syndromic tooth agenesis [J]. Inter J Stomatol, 2018, 45(2): 219-223.
[8] Cheng Xingqun, Xu Xin, Zhou Xuedong, Li Yuqing.. Research progress on cyclic di-adenosine monophosphate signaling system and its potential role in oral bacterial pathogenesis [J]. Inter J Stomatol, 2017, 44(6): 647-653.
[9] Fang Li, Wang Xiang, Wang Wenmei.. Research progress on smoking-related disease models [J]. Inter J Stomatol, 2017, 44(5): 587-590.
[10] Li Sijie1, Xiao Xue2, Zhao Wei1. Research progress on the pathogenesis of ectodermal dysplasia syndrome [J]. Inter J Stomatol, 2017, 44(2): 244-248.
[11] Wei Bin, Sun Guowen. Mechanism and treatment of bisphosphonate-related osteonecrosis of the jaw [J]. Inter J Stomatol, 2016, 43(4): 445-448.
[12] Xu Peng, Chen Chuanjun. The progress of relationship between primary trigeminal neuralgia and herpes simplex virus infection [J]. Inter J Stomatol, 2016, 43(2): 220-222.
[13] Xiang Zhenting, Zheng Xiaohui. Local drug injection to treat idiopathic trigeminal neuralgia [J]. Inter J Stomatol, 2016, 43(1): 38-.
[14] Yang Wenying1, Zhang Wenli1, Luo Yingwei2. . Research progress on the animal model of temporomandibular joint osteoarthritis [J]. Inter J Stomatol, 2015, 42(6): 677-680.
[15] Hui Hui, Wang Ge. Canine model application in periodontal disease studies [J]. Inter J Stomatol, 2015, 42(3): 314-317.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!